DOI QR코드

DOI QR Code

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ha, Ji-Hyang (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Yul (Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology) ;
  • Jang, Mi (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Sung Jean (College of Pharmacy, Gachon University) ;
  • Yoon, Ho Sup (Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University) ;
  • Kim, Eun-Hee (Division of Magnetic Resonance, Korea Basic Science Institute) ;
  • Bae, Kwang-Hee (Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Byoung Chul (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Sung Goo (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yi, Gwan-Su (Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology) ;
  • Chi, Seung-Wook (Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2014.01.03
  • Accepted : 2014.01.14
  • Published : 2014.03.31

Abstract

The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.

Keywords

References

  1. Adams, J.M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science (New York, N.Y) 281, 1322-1326. https://doi.org/10.1126/science.281.5381.1322
  2. Adams, J.M., and Cory, S. (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324-1337. https://doi.org/10.1038/sj.onc.1210220
  3. Brown, C.J., Lain, S., Verma, C.S., Fersht, A.R., and Lane, D.P. (2009). Awakening guardian angels: drugging the p53 pathway. Nat. Rev. 9, 862-873. https://doi.org/10.1038/nrc2763
  4. Chen, R., Li, L., and Weng, Z. (2003). ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80-87. https://doi.org/10.1002/prot.10389
  5. Chi, S.W. (2014). Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. pii: 2593. [Epub ahead of print]
  6. Chipuk, J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D., Schuler, M., and Green, D.R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014. https://doi.org/10.1126/science.1092734
  7. Chipuk, J.E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D.D., and Green, D.R. (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732-1735. https://doi.org/10.1126/science.1114297
  8. Czabotar, P.E., Lee, E.F., van Delft, M.F., Day, C.L., Smith, B.J., Huang, D.C., Fairlie, W.D., Hinds, M.G., and Colman, P.M. (2007). Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl. Acad. Sci. USA 104, 6217-6222. https://doi.org/10.1073/pnas.0701297104
  9. Danial, N.N. (2007). BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin. Cancer Res. 13, 7254-7263. https://doi.org/10.1158/1078-0432.CCR-07-1598
  10. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293.
  11. DeLano, W.L. (2002). The PyMOL Molecular Graphics System; in PyMOL (DeLano Scientific).
  12. Denisov, A.Y., Madiraju, M.S., Chen, G., Khadir, A., Beauparlant, P., Attardo, G., Shore, G.C., and Gehring, K. (2003). Solution structure of human BCL-w: modulation of ligand binding by the Cterminal helix. J. Biol. Chem. 278, 21124-21128. https://doi.org/10.1074/jbc.M301798200
  13. Ding, X., Yang, Z., Zhou, F., Hu, X., Zhou, C., Luo, C., He, Z., Liu, Q., Li, H., Yan, F., et al. (2012). Human intersectin 2 (ITSN2) binds to Eps8 protein and enhances its degradation. BMB Rep. 45, 183-188. https://doi.org/10.5483/BMBRep.2012.45.3.183
  14. Fesik, S.W. (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. 5, 876-885. https://doi.org/10.1038/nrc1736
  15. Green, D.R., and Kroemer, G. (2009). Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127-1130. https://doi.org/10.1038/nature07986
  16. Ha, J., Won, E., Yoon, H., Kang, S., Bae, K., Park, S., Park, B., Choi, B., Lee, J., and Chi, S. (2009). Molecular Interaction between a Bcl-2 homolog from Kaposi sarcoma virus and p53. Bull. Korean Chem. Soc. 30, 1655. https://doi.org/10.5012/bkcs.2009.30.7.1655
  17. Ha, J.H., Won, E.Y., Shin, J.S., Jang, M., Ryu, K.S., Bae, K.H., Park, S.G., Park, B.C., Yoon, H.S., and Chi, S.W. (2011). Molecular mimicry-based repositioning of nutlin-3 to anti-apoptotic Bcl-2 family proteins. J. Am. Chem. Soc. 133, 1244-1247. https://doi.org/10.1021/ja109521f
  18. Ha, J.H., Shin, J.S., Yoon, M.K., Lee, M.S., He, F., Bae, K.H., Yoon, H.S., Lee, C.K., Park, S.G., Muto, Y., et al. (2013). Dual-site interactions of p53 protein transactivation domain with antiapoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J. Biol. Chem. 288, 7387-7398. https://doi.org/10.1074/jbc.M112.400754
  19. Hagn, F., Klein, C., Demmer, O., Marchenko, N., Vaseva, A., Moll, U.M., and Kessler, H. (2010). BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain. J. Biol. Chem. 285, 3439-3450. https://doi.org/10.1074/jbc.M109.065391
  20. Harris, S.L., and Levine, A.J. (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899-2908. https://doi.org/10.1038/sj.onc.1208615
  21. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C.C. (1991). p53 mutations in human cancers. Science (New York, N.Y) 253, 49-53. https://doi.org/10.1126/science.1905840
  22. Jiang, P., Du, W., Heese, K., and Wu, M. (2006). The Bad guy cooperates with good cop p53: Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosis. Mol. Cell Biol. 26, 9071-9082. https://doi.org/10.1128/MCB.01025-06
  23. Lee, D.H., Ha, J.H., Kim, Y., Bae, K.H., Park, J.Y., Choi, W.S., Yoon, H.S., Park, S.G., Park, B.C., Yi, G.S., et al. (2011). Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochem. Biophys. Res. Commun. 408, 541-547. https://doi.org/10.1016/j.bbrc.2011.04.054
  24. Lessene, G., Czabotar, P.E., and Colman, P.M. (2008). BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov. 7, 989-1000. https://doi.org/10.1038/nrd2658
  25. Leu, J.I., Dumont, P., Hafey, M., Murphy, M.E., and George, D.L. (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. 6, 443-450. https://doi.org/10.1038/ncb1123
  26. Matissek, K.J., Mossalam, M., Okal, A., and Lim, C.S. (2013). The DNA binding domain of p53 is sufficient to trigger a potent apoptotic response at the mitochondria. Mol. Pharm. 10, 3592-3602. https://doi.org/10.1021/mp400380s
  27. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U.M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577-590. https://doi.org/10.1016/S1097-2765(03)00050-9
  28. Moll, U.M., Wolff, S., Speidel, D., and Deppert, W. (2005). Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. 17, 631-636. https://doi.org/10.1016/j.ceb.2005.09.007
  29. Petros, A.M., Medek, A., Nettesheim, D.G., Kim, D.H., Yoon, H.S., Swift, K., Matayoshi, E.D., Oltersdorf, T., and Fesik, S.W. (2001). Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci. USA 98, 3012-3017. https://doi.org/10.1073/pnas.041619798
  30. Petros, A.M., Olejniczak, E.T., and Fesik, S.W. (2004). Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta 1644, 83-94. https://doi.org/10.1016/j.bbamcr.2003.08.012
  31. Rajagopalan, S., Andreeva, A., Rutherford, T.J., and Fersht, A.R. (2010). Mapping the physical and functional interactions between the tumor suppressors p53 and BRCA2. Proc. Natl. Acad. Sci. USA 107, 8587-8592. https://doi.org/10.1073/pnas.1003689107
  32. Shin, J.S., Ha, J.H., He, F., Muto, Y., Ryu, K.S., Yoon, H.S., Kang, S., Park, S.G., Park, B.C., Choi, S.U., et al. (2012). Structural insights into the dual-targeting mechanism of Nutlin-3. Biochem. Biophys. Res. Commun. 420, 48-53. https://doi.org/10.1016/j.bbrc.2012.02.113
  33. Shin, J.S., Ha, J.H., and Chi, S.W. (2013). Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochem. Biophys. Res. Commun. 443, 882-887.
  34. Sot, B., Freund, S.M., and Fersht, A.R. (2007). Comparative biophysical characterization of p53 with the pro-apoptotic BAK and the anti-apoptotic BCL-xL. J. Biol. Chem. 282, 29193-29200. https://doi.org/10.1074/jbc.M705544200
  35. Stoll, R., Renner, C., Hansen, S., Palme, S., Klein, C., Belling, A., Zeslawski, W., Kamionka, M., Rehm, T., Muhlhahn, P., et al. (2001). Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40, 336-344. https://doi.org/10.1021/bi000930v
  36. Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A., Klein, C., Pan, H., Kessler, H., Pancoska, P., and Moll, U.M. (2006). WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J. Biol. Chem. 281, 8600-8606. https://doi.org/10.1074/jbc.M507611200
  37. Vaseva, A.V., and Moll, U.M. (2009). The mitochondrial p53 pathway. Biochim. Biophys. Acta 1787, 414-420. https://doi.org/10.1016/j.bbabio.2008.10.005
  38. Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network. Nature 408, 307-310. https://doi.org/10.1038/35042675
  39. Vousden, K.H., and Lu, X. (2002). Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594-604. https://doi.org/10.1038/nrc864
  40. Wang, R., Shen, J., Huang, P., and Zhu, X. (2013). CCCTC-binding factor controls its own nuclear transport via regulating the expression of importin 13. Mol. Cells 35, 388-395. https://doi.org/10.1007/s10059-013-2283-z
  41. Wong, K.B., DeDecker, B.S., Freund, S.M., Proctor, M.R., Bycroft, M., and Fersht, A.R. (1999). Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc. Natl. Acad. Sci. USA 96, 8438-8442. https://doi.org/10.1073/pnas.96.15.8438
  42. Xu, H., Ye, H., Osman, N.E., Sadler, K., Won, E.Y., Chi, S.W., and Yoon, H.S. (2009). The MDM2-binding region in the transactivation domain of p53 also acts as a Bcl-X(L)-binding motif. Biochemistry 48, 12159-12168. https://doi.org/10.1021/bi901188s
  43. Yao, H., Mi, S., Gong, W., Lin, J., Xu, N., Perrett, S., Xia, B., Wang, J., and Feng, Y. (2013). Anti-apoptosis proteins Mcl-1 and BclxL have different p53-binding profiles. Biochemistry 52, 6324-6334. https://doi.org/10.1021/bi400690m
  44. Yoon, I.S., Chung, J.H., Hahm, S.H., Park, M.J., Lee, Y.R., Ko, S.I., Kang, L.W., Kim, T.S., Kim, J., and Han, Y.S. (2011). Ribosomal protein S3 is phosphorylated by Cdk1/cdc2 during G2/M phase. BMB Rep. 44, 529-534. https://doi.org/10.5483/BMBRep.2011.44.8.529
  45. Youle, R.J., and Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47-59. https://doi.org/10.1038/nrm2308
  46. Yu, G.W., Rudiger, S., Veprintsev, D., Freund, S., Fernandez-Fernandez, M.R., and Fersht, A.R. (2006). The central region of HDM2 provides a second binding site for p53. Proc. Natl. Acad. Sci. USA 103, 1227-1232. https://doi.org/10.1073/pnas.0510343103

Cited by

  1. Key points of basic theories and clinical practice in rAd-p53 (Gendicine™) gene therapy for solid malignant tumors vol.15, pp.3, 2015, https://doi.org/10.1517/14712598.2015.990882
  2. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation vol.116, pp.11, 2016, https://doi.org/10.1021/acs.chemrev.5b00718
  3. Protective effects and plausible mechanisms of antler-velvet polypeptide against hydrogen peroxide induced injury in human umbilical vein endothelial cells vol.95, pp.5, 2017, https://doi.org/10.1139/cjpp-2016-0196
  4. Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line vol.9, pp.5, 2015, https://doi.org/10.3892/etm.2015.2314
  5. Structure and apoptotic function of p73 vol.48, pp.2, 2015, https://doi.org/10.5483/BMBRep.2015.48.2.255
  6. Bcl-2/MDM2 Dual Inhibitors Based on Universal Pyramid-Like α-Helical Mimetics vol.59, pp.7, 2016, https://doi.org/10.1021/acs.jmedchem.5b01913
  7. Structural insights into the transcription-independent apoptotic pathway of p53 vol.47, pp.3, 2014, https://doi.org/10.5483/BMBRep.2014.47.3.261
  8. The physical interaction of p53 and plakoglobin is necessary for their synergistic inhibition of migration and invasion vol.7, pp.18, 2014, https://doi.org/10.18632/oncotarget.8616
  9. Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miR-147b as a potential biomarker in ovarian cancer prognosis vol.8, pp.12, 2014, https://doi.org/10.18632/oncotarget.13095
  10. Upregulation of miR-146a increases cisplatin sensitivity of the non-small cell lung cancer A549 cell line by targeting JNK-2 vol.14, pp.6, 2014, https://doi.org/10.3892/ol.2017.7242
  11. Diallyl Trisulfide Inhibits Growth of NCI-H460 in Vitro and in Vivo , and Ameliorates Cisplatin-Induced Oxidative Injury in the Treatment of Lung Carcinoma in Xenograft Mice vol.13, pp.2, 2014, https://doi.org/10.7150/ijbs.16828
  12. BCL-w: apoptotic and non-apoptotic role in health and disease vol.11, pp.4, 2014, https://doi.org/10.1038/s41419-020-2417-0
  13. Bcl-xL Dynamics under the Lens of Protein Structure Networks vol.125, pp.17, 2014, https://doi.org/10.1021/acs.jpcb.0c11562
  14. Cytotoxicity analysis of biomass combustion particles in human pulmonary alveolar epithelial cells on an air-liquid interface/dynamic culture platform vol.18, pp.1, 2014, https://doi.org/10.1186/s12989-021-00426-x