References
- Adams, J.M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science (New York, N.Y) 281, 1322-1326. https://doi.org/10.1126/science.281.5381.1322
- Adams, J.M., and Cory, S. (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324-1337. https://doi.org/10.1038/sj.onc.1210220
- Brown, C.J., Lain, S., Verma, C.S., Fersht, A.R., and Lane, D.P. (2009). Awakening guardian angels: drugging the p53 pathway. Nat. Rev. 9, 862-873. https://doi.org/10.1038/nrc2763
- Chen, R., Li, L., and Weng, Z. (2003). ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80-87. https://doi.org/10.1002/prot.10389
- Chi, S.W. (2014). Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. pii: 2593. [Epub ahead of print]
- Chipuk, J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D., Schuler, M., and Green, D.R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014. https://doi.org/10.1126/science.1092734
- Chipuk, J.E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D.D., and Green, D.R. (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732-1735. https://doi.org/10.1126/science.1114297
- Czabotar, P.E., Lee, E.F., van Delft, M.F., Day, C.L., Smith, B.J., Huang, D.C., Fairlie, W.D., Hinds, M.G., and Colman, P.M. (2007). Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl. Acad. Sci. USA 104, 6217-6222. https://doi.org/10.1073/pnas.0701297104
- Danial, N.N. (2007). BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin. Cancer Res. 13, 7254-7263. https://doi.org/10.1158/1078-0432.CCR-07-1598
- Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293.
- DeLano, W.L. (2002). The PyMOL Molecular Graphics System; in PyMOL (DeLano Scientific).
- Denisov, A.Y., Madiraju, M.S., Chen, G., Khadir, A., Beauparlant, P., Attardo, G., Shore, G.C., and Gehring, K. (2003). Solution structure of human BCL-w: modulation of ligand binding by the Cterminal helix. J. Biol. Chem. 278, 21124-21128. https://doi.org/10.1074/jbc.M301798200
- Ding, X., Yang, Z., Zhou, F., Hu, X., Zhou, C., Luo, C., He, Z., Liu, Q., Li, H., Yan, F., et al. (2012). Human intersectin 2 (ITSN2) binds to Eps8 protein and enhances its degradation. BMB Rep. 45, 183-188. https://doi.org/10.5483/BMBRep.2012.45.3.183
- Fesik, S.W. (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. 5, 876-885. https://doi.org/10.1038/nrc1736
- Green, D.R., and Kroemer, G. (2009). Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127-1130. https://doi.org/10.1038/nature07986
- Ha, J., Won, E., Yoon, H., Kang, S., Bae, K., Park, S., Park, B., Choi, B., Lee, J., and Chi, S. (2009). Molecular Interaction between a Bcl-2 homolog from Kaposi sarcoma virus and p53. Bull. Korean Chem. Soc. 30, 1655. https://doi.org/10.5012/bkcs.2009.30.7.1655
- Ha, J.H., Won, E.Y., Shin, J.S., Jang, M., Ryu, K.S., Bae, K.H., Park, S.G., Park, B.C., Yoon, H.S., and Chi, S.W. (2011). Molecular mimicry-based repositioning of nutlin-3 to anti-apoptotic Bcl-2 family proteins. J. Am. Chem. Soc. 133, 1244-1247. https://doi.org/10.1021/ja109521f
- Ha, J.H., Shin, J.S., Yoon, M.K., Lee, M.S., He, F., Bae, K.H., Yoon, H.S., Lee, C.K., Park, S.G., Muto, Y., et al. (2013). Dual-site interactions of p53 protein transactivation domain with antiapoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J. Biol. Chem. 288, 7387-7398. https://doi.org/10.1074/jbc.M112.400754
- Hagn, F., Klein, C., Demmer, O., Marchenko, N., Vaseva, A., Moll, U.M., and Kessler, H. (2010). BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain. J. Biol. Chem. 285, 3439-3450. https://doi.org/10.1074/jbc.M109.065391
- Harris, S.L., and Levine, A.J. (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899-2908. https://doi.org/10.1038/sj.onc.1208615
- Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C.C. (1991). p53 mutations in human cancers. Science (New York, N.Y) 253, 49-53. https://doi.org/10.1126/science.1905840
- Jiang, P., Du, W., Heese, K., and Wu, M. (2006). The Bad guy cooperates with good cop p53: Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosis. Mol. Cell Biol. 26, 9071-9082. https://doi.org/10.1128/MCB.01025-06
- Lee, D.H., Ha, J.H., Kim, Y., Bae, K.H., Park, J.Y., Choi, W.S., Yoon, H.S., Park, S.G., Park, B.C., Yi, G.S., et al. (2011). Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochem. Biophys. Res. Commun. 408, 541-547. https://doi.org/10.1016/j.bbrc.2011.04.054
- Lessene, G., Czabotar, P.E., and Colman, P.M. (2008). BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov. 7, 989-1000. https://doi.org/10.1038/nrd2658
- Leu, J.I., Dumont, P., Hafey, M., Murphy, M.E., and George, D.L. (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. 6, 443-450. https://doi.org/10.1038/ncb1123
- Matissek, K.J., Mossalam, M., Okal, A., and Lim, C.S. (2013). The DNA binding domain of p53 is sufficient to trigger a potent apoptotic response at the mitochondria. Mol. Pharm. 10, 3592-3602. https://doi.org/10.1021/mp400380s
- Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U.M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577-590. https://doi.org/10.1016/S1097-2765(03)00050-9
- Moll, U.M., Wolff, S., Speidel, D., and Deppert, W. (2005). Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. 17, 631-636. https://doi.org/10.1016/j.ceb.2005.09.007
- Petros, A.M., Medek, A., Nettesheim, D.G., Kim, D.H., Yoon, H.S., Swift, K., Matayoshi, E.D., Oltersdorf, T., and Fesik, S.W. (2001). Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci. USA 98, 3012-3017. https://doi.org/10.1073/pnas.041619798
- Petros, A.M., Olejniczak, E.T., and Fesik, S.W. (2004). Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta 1644, 83-94. https://doi.org/10.1016/j.bbamcr.2003.08.012
- Rajagopalan, S., Andreeva, A., Rutherford, T.J., and Fersht, A.R. (2010). Mapping the physical and functional interactions between the tumor suppressors p53 and BRCA2. Proc. Natl. Acad. Sci. USA 107, 8587-8592. https://doi.org/10.1073/pnas.1003689107
- Shin, J.S., Ha, J.H., He, F., Muto, Y., Ryu, K.S., Yoon, H.S., Kang, S., Park, S.G., Park, B.C., Choi, S.U., et al. (2012). Structural insights into the dual-targeting mechanism of Nutlin-3. Biochem. Biophys. Res. Commun. 420, 48-53. https://doi.org/10.1016/j.bbrc.2012.02.113
- Shin, J.S., Ha, J.H., and Chi, S.W. (2013). Targeting of p53 peptide analogues to anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochem. Biophys. Res. Commun. 443, 882-887.
- Sot, B., Freund, S.M., and Fersht, A.R. (2007). Comparative biophysical characterization of p53 with the pro-apoptotic BAK and the anti-apoptotic BCL-xL. J. Biol. Chem. 282, 29193-29200. https://doi.org/10.1074/jbc.M705544200
- Stoll, R., Renner, C., Hansen, S., Palme, S., Klein, C., Belling, A., Zeslawski, W., Kamionka, M., Rehm, T., Muhlhahn, P., et al. (2001). Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40, 336-344. https://doi.org/10.1021/bi000930v
- Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A., Klein, C., Pan, H., Kessler, H., Pancoska, P., and Moll, U.M. (2006). WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J. Biol. Chem. 281, 8600-8606. https://doi.org/10.1074/jbc.M507611200
- Vaseva, A.V., and Moll, U.M. (2009). The mitochondrial p53 pathway. Biochim. Biophys. Acta 1787, 414-420. https://doi.org/10.1016/j.bbabio.2008.10.005
- Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network. Nature 408, 307-310. https://doi.org/10.1038/35042675
- Vousden, K.H., and Lu, X. (2002). Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594-604. https://doi.org/10.1038/nrc864
- Wang, R., Shen, J., Huang, P., and Zhu, X. (2013). CCCTC-binding factor controls its own nuclear transport via regulating the expression of importin 13. Mol. Cells 35, 388-395. https://doi.org/10.1007/s10059-013-2283-z
- Wong, K.B., DeDecker, B.S., Freund, S.M., Proctor, M.R., Bycroft, M., and Fersht, A.R. (1999). Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc. Natl. Acad. Sci. USA 96, 8438-8442. https://doi.org/10.1073/pnas.96.15.8438
- Xu, H., Ye, H., Osman, N.E., Sadler, K., Won, E.Y., Chi, S.W., and Yoon, H.S. (2009). The MDM2-binding region in the transactivation domain of p53 also acts as a Bcl-X(L)-binding motif. Biochemistry 48, 12159-12168. https://doi.org/10.1021/bi901188s
- Yao, H., Mi, S., Gong, W., Lin, J., Xu, N., Perrett, S., Xia, B., Wang, J., and Feng, Y. (2013). Anti-apoptosis proteins Mcl-1 and BclxL have different p53-binding profiles. Biochemistry 52, 6324-6334. https://doi.org/10.1021/bi400690m
- Yoon, I.S., Chung, J.H., Hahm, S.H., Park, M.J., Lee, Y.R., Ko, S.I., Kang, L.W., Kim, T.S., Kim, J., and Han, Y.S. (2011). Ribosomal protein S3 is phosphorylated by Cdk1/cdc2 during G2/M phase. BMB Rep. 44, 529-534. https://doi.org/10.5483/BMBRep.2011.44.8.529
- Youle, R.J., and Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47-59. https://doi.org/10.1038/nrm2308
- Yu, G.W., Rudiger, S., Veprintsev, D., Freund, S., Fernandez-Fernandez, M.R., and Fersht, A.R. (2006). The central region of HDM2 provides a second binding site for p53. Proc. Natl. Acad. Sci. USA 103, 1227-1232. https://doi.org/10.1073/pnas.0510343103
Cited by
- Key points of basic theories and clinical practice in rAd-p53 (Gendicine™) gene therapy for solid malignant tumors vol.15, pp.3, 2015, https://doi.org/10.1517/14712598.2015.990882
- Advances in NMR Methods To Map Allosteric Sites: From Models to Translation vol.116, pp.11, 2016, https://doi.org/10.1021/acs.chemrev.5b00718
- Protective effects and plausible mechanisms of antler-velvet polypeptide against hydrogen peroxide induced injury in human umbilical vein endothelial cells vol.95, pp.5, 2017, https://doi.org/10.1139/cjpp-2016-0196
- Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line vol.9, pp.5, 2015, https://doi.org/10.3892/etm.2015.2314
- Structure and apoptotic function of p73 vol.48, pp.2, 2015, https://doi.org/10.5483/BMBRep.2015.48.2.255
- Bcl-2/MDM2 Dual Inhibitors Based on Universal Pyramid-Like α-Helical Mimetics vol.59, pp.7, 2016, https://doi.org/10.1021/acs.jmedchem.5b01913
- Structural insights into the transcription-independent apoptotic pathway of p53 vol.47, pp.3, 2014, https://doi.org/10.5483/BMBRep.2014.47.3.261
- The physical interaction of p53 and plakoglobin is necessary for their synergistic inhibition of migration and invasion vol.7, pp.18, 2014, https://doi.org/10.18632/oncotarget.8616
- Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miR-147b as a potential biomarker in ovarian cancer prognosis vol.8, pp.12, 2014, https://doi.org/10.18632/oncotarget.13095
- Upregulation of miR-146a increases cisplatin sensitivity of the non-small cell lung cancer A549 cell line by targeting JNK-2 vol.14, pp.6, 2014, https://doi.org/10.3892/ol.2017.7242
- Diallyl Trisulfide Inhibits Growth of NCI-H460 in Vitro and in Vivo , and Ameliorates Cisplatin-Induced Oxidative Injury in the Treatment of Lung Carcinoma in Xenograft Mice vol.13, pp.2, 2014, https://doi.org/10.7150/ijbs.16828
- BCL-w: apoptotic and non-apoptotic role in health and disease vol.11, pp.4, 2014, https://doi.org/10.1038/s41419-020-2417-0
- Bcl-xL Dynamics under the Lens of Protein Structure Networks vol.125, pp.17, 2014, https://doi.org/10.1021/acs.jpcb.0c11562
- Cytotoxicity analysis of biomass combustion particles in human pulmonary alveolar epithelial cells on an air-liquid interface/dynamic culture platform vol.18, pp.1, 2014, https://doi.org/10.1186/s12989-021-00426-x