DOI QR코드

DOI QR Code

Automated Image Alignment and Monitoring Method for Efficient Stereoscopic 3D Contents Production

스테레오스코픽 3D 콘텐츠 제작의 효율성 향상을 위한 자동 영상정렬 및 모니터링 기법

  • Kim, Jae-In (Department of Geoinformatic Engineering, Inha University) ;
  • Kim, Taejung (Department of Geoinformatic Engineering, Inha University)
  • 김재인 (인하대학교 지리정보공학과) ;
  • 김태정 (인하대학교 지리정보공학과)
  • Received : 2014.01.10
  • Accepted : 2014.02.21
  • Published : 2014.03.30

Abstract

Minimization of visual fatigue is important for production of high quality stereoscopic 3D contents. Vertical disparity of stereo images occurred during contents production is considered as the main factor of visual fatigue. To ensure correct stereoscopy vertical disparity needs to be eliminated. In this paper, a method for automated image alignment was proposed for Stereoscopic 3D contents generation and post-processing steps. The proposed method consists of two parts: rectification for image alignment and camera motion detection. The proposed method showed that its rectification performance was the most superior among the existing methods tested and that camera motion detection had a success rate of 98.35%. Through these evaluations, we confirmed that the proposed method can be effectively applied to 3D contents production.

고품질의 스테레오스코픽 3D 콘텐츠를 제작하기 위해서는 입체피로를 유발하는 문제요인들을 최소화하는 것이 중요하다. 촬영과정에서 스테레오 좌우 영상 간에 발생되는 수직시차는 입체피로의 주된 요인으로, 정확한 입체시를 유지하기 위해 필수적으로 제거될 필요가 있다. 본 논문에서는 콘텐츠 제작의 효율성 향상을 위하여 후처리 과정에서뿐만 아니라 촬영과 동시에 영상정렬이 수행된 결과를 모니터링할 수 있는 자동화된 방식의 영상처리 기법을 제안하였다. 제안방법은 대응점 추출과 기하구조 추정, 그리고 수직시차의 제거로 이어지는 편위수정 부분과 카메라 움직임 탐지 부분으로 구성되어 있으며, 각각에 대해 성능분석이 실시되었다. 실험결과, 제안방법은 비교분석을 위해 사용된 기존방법들에 비해 보다 향상된 성능을 나타냈으며, 카메라 움직임 탐지부분에서도 98.35% 성공률의 뛰어난 탐지성능을 보여주었다. 이러한 일련의 성능검증을 통해 실제 콘텐츠 제작현장에서 본 논문의 제안방법이 효과적으로 활용될 수 있음을 확인할 수 있었다.

Keywords

References

  1. Kim, H., Kim, H., Jang, H., Nam, S., Technical Trend of Stereoscopic Content Production, Electronics and Telecommunications Trends, vol. 26, no. 1, pp. 13-24, 2011.
  2. Zilly, F., Kluger, J., Kauff, P., Production Rules for Stereo Acquisition. Proceedings of the IEEE, vol. 99, no. 4, pp. 590-606, 2011. https://doi.org/10.1109/JPROC.2010.2095810
  3. Kang, Y., Ho, Y., An efficient image rectification method for parallel multi-camera arrangement, IEEE transactions on Consumer Electronics, vol. 57, no. 3, pp. 1041-1048, 2011. https://doi.org/10.1109/TCE.2011.6018853
  4. Hartley, R., In defense of the eight-point algorithm. IEEE transactions on pattern analysis and machine intelligence, vol. 19, no. 7, pp. 580-593, 1997. https://doi.org/10.1109/34.601246
  5. Hartley, R., Zisserman, A., Multiple View Geometry in Computer Vision, 2nd ed. Cambridge University Press, New York., 2003.
  6. Wu, H., Yu, Y., Projective Rectification with Reduced Geometric Distortion for Stereo Vision and Stereoscopic Video. Journal of Intelligent and Robotic Systems, vol. 42, no. 1, pp. 71-94, 2005. https://doi.org/10.1007/s10846-004-3023-6
  7. Banno, A., Ikeuchi, K., Estimation of F Matrix and image rectification by double quaternion, Information Sciences, vol. 183, no. 1, pp. 140-150, 2012. https://doi.org/10.1016/j.ins.2011.08.019
  8. Fathy, M. E., Hussein, A. S., Tolba, M. F., Fundamental matrix estimation: A study of error criteria, Pattern Recognition Letters, vol. 32, no. 2, pp. 383-391, 2011. https://doi.org/10.1016/j.patrec.2010.09.019
  9. Fusiello, A., Irsara, L., Quasi-Euclidean epipolar rectification of uncalibrated images, Machine Vision and Applications, vol. 22, no. 4, pp. 663-670, 2011. https://doi.org/10.1007/s00138-010-0270-3
  10. Kim, J., Kim, H., Lee, T., Kim, T., Photogrammetric approach for precise correction of camera misalignment for 3D image generation. Proceedings of the IEEE International Conference on Consumer Electronics, pp. 396-397, January 13-16, 2012.
  11. Kim, J., Kim, T., Precise Rectification of Misaligned Stereo Images for 3D Image Generation, Journal of Broadcast Engineering, vol. 17, no. 2, pp. 411-421, 2012. https://doi.org/10.5909/JEB.2012.17.2.411
  12. Bay, H., Ess, A., Tuytelaars, T., Gool, L. V., SURF: Speeded up robust features, Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, 2008. https://doi.org/10.1016/j.cviu.2007.09.014
  13. Fischler, M. A., Bolles, R. C., Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981. https://doi.org/10.1145/358669.358692
  14. Grodecki, J., Dial, G., Block adjustment of high-resolution satellite images described by rational polynomials, Photogrammetric Engineering & Remote Sensing, vol. 69, no. 1, pp. 59-68, 2003. https://doi.org/10.14358/PERS.69.1.59
  15. Kim, J., Kim, T., Development of photogrammetric rectification method applying Bayesian approach for high quality 3D contents production, Generation, Journal of Broadcast Engineering, vol. 18, no. 1, pp. 31-42, 2013. https://doi.org/10.5909/JBE.2013.18.1.31
  16. Mallon, J., Whelan, P., Projective rectification from the fundamental matrix. Image and Vision Computing, vol. 23, no. 7, pp. 643-650, 2005. https://doi.org/10.1016/j.imavis.2005.03.002