DOI QR코드

DOI QR Code

Digitally Modulated Signal Classification based on Higher Order Statistics of Cyclostationary Process

순환정상 프로세스의 고차 통계 특성을 이용한 디지털 변조인식

  • Ahn, Woo-Hyun (Department of Electronics Engineering, Chungbuk National University) ;
  • Nah, Sun-Phil (Agency for Defense Development) ;
  • Seo, Bo-Seok (Department of Electronics Engineering, Chungbuk National University)
  • Received : 2014.01.06
  • Accepted : 2014.03.14
  • Published : 2014.03.30

Abstract

In this paper, we propose an automatic modulation classification method for ten digitally modulated baseband signals, such as 2-FSK, 4-FSK, 8-FSK, MSK, BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-QAM based on higher order statistics of cyclostationary process. The first order cyclic moments and higher order cyclic cumulants of the signal are used as features of the modulation signals. The proposed method consists of two stages. At the first stage, we classify modulation signals as M-FSK and non-FSK using peaks of the first order cyclic moment. At the next step, we apply the Gaussian mixture model-based classifier to classify non-FSK. Simulation results are demonstrated to evaluate the proposed scheme. The results show high probability of classification even in the presence of frequency and phase offsets.

이 논문에서는 순환정상 프로세스의 고차 통계 특성을 바탕으로 2-FSK, 4-FSK, 8-FSK, MSK, BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, 64-QAM 등 10개의 기저대역 디지털 변조신호를 자동으로 인식하는 방법을 제안하였다. 변조신호의 고유한 성질을 나타내는 특징변수로는 1차 순환 모멘트와 고차 순환 큐뮬런트를 이용하였다. 제안한 변조인식기는 크게 두 단계로 구성되며, 첫 번째 단계에서는 1차 순환 모멘트가 나타내는 첨두치를 이용하여 M-FSK와 비FSK로 변조신호를 분류한다. 두 번째 단계에서는 비FSK를 분류하기 위해 고차 순환 큐뮬런트 값을 이용하는 Gaussian 혼합 모델 기반의 분류기를 적용하였다. 제안한 방법의 성능을 검증하기 위해서 모의실험을 실시하였다. 모의실험 결과 제안한 분류기는 주파수와 위상 옵셋이 존재하는 환경에서도 우수한 분류확률을 나타내었다.

Keywords

References

  1. E. E. Azzouz and A. K. Nandi, Automatic Modulation Recognition of Communication Signals, Kluwer, Boston, MA, 1996.
  2. T. Ulversoy, "Software Defined Radio: Challenges and Opportunities", Communications Surveys & Tutorials, IEEE, vol. 12, pp. 531-550, 2010. https://doi.org/10.1109/SURV.2010.032910.00019
  3. S. Haykin, "Cognitive radio: brain-empowered wireless communications", in Proc. of the IEEE Journal on Selected Areas in Communications, vol. 23, pp. 201-220, 2005. https://doi.org/10.1109/JSAC.2004.839380
  4. O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, "A survey of automatic modulation classification techniques: classical approaches and new trends", IET Commun., vol. 1, pp. 137-156, 2007. https://doi.org/10.1049/iet-com:20050176
  5. J.L. Xu, Su Wei, Zhou MengChu, "Likelihood-Ratio Approaches to Automatic Modulation Classification," Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 41, no. 4, pp. 455-469, 7. 2011. https://doi.org/10.1109/TSMCC.2010.2076347
  6. A. Hazza, M. Shoaib, S. A. Alshebeili, and A. Fahad, "An overview of feature-based methods for digital modulation classification", in Communications, Signal Processing, and their Applications (ICCSPA), 2013 1st International Conference on, pp. 1-6, 2013.
  7. E. E. Azzouz and A. K. Nandi, "Procedure for automatic recognition of analogue and digital modulations", Communications, IEE Proceedings, vol. 143, pp. 259-266, 1996.
  8. Pawar, S.U.; Doherty, J.F., "Modulation Recognition in Continuous Phase Modulation Using Approximate Entropy", Information Forensics and Security, IEEE Transactions on , vol.6, no.3, pp. 843-852, Sept. 2011. https://doi.org/10.1109/TIFS.2011.2159000
  9. K.C. Ho, W. Prokopiw and Y.T. Chan, "Modulation identification of digital signals by the wavelet transform", IEE Proceedings - Radar, Sonar and Navigation, vol. 147, pp. 169, 2000. https://doi.org/10.1049/ip-rsn:20000492
  10. S. Qinghua and Y. Karasawa, "Automatic Modulation Identification Based on the Probability Density Function of Signal Phase", Communications, IEEE Transactions on, vol. 60, pp. 1033-1044, 2012. https://doi.org/10.1109/TCOMM.2012.021712.100638
  11. A. Swami and B. Sadler, "Hierarchical digital modulation classification using cumulants", IEEE Transactions on Communication, vol. 48, pp. 416-429, 2000. https://doi.org/10.1109/26.837045
  12. W. Hongfei, O. A. Dobre, L. Cheng, and R. Inkol, "M-FSK signal recognition in fading channels for cognitive radio", in Radio and Wireless Symposium (RWS), 2012 IEEE, pp. 375-378, 2012.
  13. E. Like, V. D. Chakravarthy, P. Ratazzi, and Z. Wu, "Signal classification in fading channels using cyclic spectral analysis", EURASIP Journal on Wireless Communications and Networking, 1. 2009.
  14. O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, "Cyclostationarity- Based Modulation Classification of Linear Digital Modulations in Flat Fading Channels", Wireless Personal Communications, vol. 54, pp. 699-717, 9. 2010. https://doi.org/10.1007/s11277-009-9776-2
  15. O. A. Dobre, M. Oner, S. Rajan, and R. Inkol, "Cyclostationarity- Based Robust Algorithms for QAM Signal Identification", Communications Letters, IEEE, vol. 16, pp. 12-15, 2012. https://doi.org/10.1109/LCOMM.2011.112311.112006
  16. C. W. Lim and M. B. Wakin, Compressive Higher Order Cyclostationary Statistics (2013), from http://inside.mines.edu -clim/ pubs/chos_ draft_double_june_2013.pdf.
  17. M. W. Aslam, Z. Zhu, A. K. Nandi, "Automatic modulation classification using combination of genetic programming and KNN", IEEE Transactions on wireless communications, vol. 11, no. 8, pp. 2742-2750, 8. 2012.
  18. A. Kubankova, H. Atassi and D. Kubanek, "Gaussian mixture model based recognition of digital modulations of noisy signals", Electrotechnics magazine, vol. 2, no.1, 4. 2011.
  19. W. A. Gardner and C. M. Spooner, "The cumulant theory of cyclostationary time-series. I. Foundation", Signal Processing, IEEE Transactions on, vol. 42, pp. 3387-3408, 1994. https://doi.org/10.1109/78.340775
  20. S. Theodoridis and K. Koutroumbas, Pattern Recognition, Elsevier Science, 2008.