DOI QR코드

DOI QR Code

월출산 국립공원의 고등균류 분포

Distribution of Higher Fungi in Wolchulsan National Park

  • 장석기 (원광대학교 환경조경학과)
  • Jang, Seog-Ki (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University)
  • 투고 : 2013.11.20
  • 심사 : 2014.03.19
  • 발행 : 2014.03.31

초록

2009년 4월부터 2011년 10월까지 월출산국립공원 고등균류를 조사한 결과는 다음과 같다. 조사기간 동안 고등균류는 총 1계 2문 5강 18목 56과 133속 298종이었으며, 담자균문은 12목 47과 120속 278종이, 자낭균문은 6목 9과 13속 20종이 조사되었다. 대부분의 고등균류는 담자균문중 담자균강에 속하는 것으로 나타났다. 주름버섯목이 20과 54속 134종이, 그물버섯목은 7과 20속 43종, 무당버섯목 3과 5속 44종 및 구멍장이버섯목 5과 21속 30종으로 4목의 종수가 총 251종으로 전체 발생 종수의 84. 2%로 대부분을 차지한 것으로 조사되었다. 가장 많이 발생된 균류는 무당버섯과로 37종이었으며, 그물버섯과(33종), 광대버섯과(29종), 주름버섯과(21종) 및 구멍장이버섯과(20종) 순으로 나타났다. 월별 분포에서는 7월(46과 94속 196종)이 가장 많았고 8월(43과 92속 171종), 9월(38과 74속 120종)의 순이었다. 고도별에서는 100~199 m(54과 127속 267종)에서 가장 많았고 200~299 m(42과 85속 160종), 300~399 m(18과 31속 46종) 순으로 나타났다. 대부분의 고등균류는 평균온도 $26.0{\sim}27.9^{\circ}C$, 최고온도 $32.0{\sim}34.9^{\circ}C$, 최저온도 $24.0{\sim}25.9^{\circ}C$ 및 강수량은 100 mm 이상인 시기에 다양한 종들이 발생하는 것으로 나타났다.

The result of the survey on higher fungi in the Wolchulsan National Park from April 2009 to October 2011 is as follows. During the survey, total of 1 kingdoms 2 divisions 5 classes 18 orders 56 families 133 genera and 298 species were surveyed, Basidiomycota has 12 orders 47 families 120 genera 278 species, Ascomycota 6 orders 9 families 13 genera 20 species. As for Basidiomycota, Agaricomycetes has 46 families 118 genera 276 species. The most occurred fungi were Russulaceae with 37 species, followed by Boletaceae, Amanitaceae, Agaricaceae and Polyporaceae. Various species of most higher fungi occurred during the period with average temperature of 26.0~27.9, max. 32.0~34.9, min. 24.0~25.9, and over 100 mm of precipitation.

키워드

참고문헌

  1. Lee TS. Rearrangement of Korean recorded mushrooms. Kor Soc For Environ Res; 2013.
  2. Taylor AF, Martin F, Read DJ. Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst] and beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze ED, editor. Carbon and nitrogen cycling in European forest ecosystems-ecological studies. Berlin: Springer-Verlag; 2000. p. 343-365.
  3. Baxter JW, Dighton J. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol 2001;152:139-149. https://doi.org/10.1046/j.0028-646x.2001.00245.x
  4. Dahlberg A. Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 2001;150: 555-562. https://doi.org/10.1046/j.1469-8137.2001.00142.x
  5. Jones MD, Durall DM, Cairney JW. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 2003;157:399-422. https://doi.org/10.1046/j.1469-8137.2003.00698.x
  6. Heinonsalo J, Koskiahde I, Sen R. Scots pine bait seedling performance and root colonizing ectomycorrhizal fungal community dynamics before and during the 4 years after forest clear-cut logging. Can J For Res 2007;37:415-429. https://doi.org/10.1139/x06-213
  7. Parrent JL, Morris WF, Vilgalys R. $CO_{2}$-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 2006;87:2278-2287. https://doi.org/10.1890/0012-9658(2006)87[2278:CANAAE]2.0.CO;2
  8. Andrew C, Lilleskov EA. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric $CO_{2}$ and $O_{3}$. Ecol Lett 2009;12:813-822. https://doi.org/10.1111/j.1461-0248.2009.01334.x
  9. Ishida TA, Nara K, Hogetsu T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 2007;174:430-440. https://doi.org/10.1111/j.1469-8137.2007.02016.x
  10. Dickie IA, Dentinger BTM, Avis PG, McLaughlin DJ, Reich PB. Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities. Mycologia 2009;101:473-483. https://doi.org/10.3852/08-178
  11. Peay KG, Kennedy PG, Bruns TD. Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 2011;4: 233-240. https://doi.org/10.1016/j.funeco.2010.09.010
  12. Morris MH, Smith ME, Rizzo DM, Rejmanek M, Bledsoe CS. Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol 2008;178:167-76. https://doi.org/10.1111/j.1469-8137.2007.02348.x
  13. Aponte C, Garcia LV, Maranon T, Gardes M. Indirect host effect on ectomycorrhizal fungi: leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biol Biochem 2010;42:788-796. https://doi.org/10.1016/j.soilbio.2010.01.014
  14. Kernaghan G. Mycorrhizal diversity: cause and effect? Pedobiologia 2005;49:511-520. https://doi.org/10.1016/j.pedobi.2005.05.007
  15. Twieg BD, Durall DM, Simard SW, Jones MD. Influence of soil nutrients on ectomycorrhizal communities in a chronosequence of mixed temperate forests. Mycorrhiza 2009;19: 305-316. https://doi.org/10.1007/s00572-009-0232-7
  16. Kjoller R, Nilsson LO, Hansen K, Schmidt IK, Vesterdal L, Gundersen P. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol 2012;194:278-286. https://doi.org/10.1111/j.1469-8137.2011.04041.x
  17. Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M. A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 2007;10:470-480. https://doi.org/10.1111/j.1461-0248.2007.01035.x
  18. Singer R. The Agaricales in modern taxonomy. 4th ed. Koenigstein: Koeltz Scientific; 1986.
  19. Donk A. A conspectus of the families of Aphyllophorales, Rijksherharium, Leiden. Persoonia 1964;3:199-324.
  20. Eriksson J, Ryvarden L. The Corticiaceae of North Europe. Vol. 2. Aleurodiscus-Confertobasidium. Oslo: Fungiflora 1973; 59-286.
  21. Eriksson J, Ryvarden L. The Corticiaceae of North Europe. Vol. 3. Coronicium-Hyphoderma. Oslo: Fungiflora 1975;287-546.
  22. Eriksson J, Ryvarden L. The Corticiaceae of North Europe. Vol. 4. Hyphodermella-Mycoacia. Oslo: Fungiflora 1976;547-886.
  23. Eriksson J, Hjortstam K, Ryvarden L. The Corticiaceae of North Europe. Vol. 5. Mycoaciella-Phanerochaete. Oslo: Fungiflora 1978;887-1048.
  24. Eriksson J, Hjortstam K, Ryvarden L. The Corticiaceae of North Europe. Vol. 6. Phlebia-Sarcodontia. Oslo: Fungiflora 1981;1049-1276.
  25. Eriksson J, Hjortstam K, Ryvarden L. The Corticiaceae of North Europe. Vol. 7. Schizopora-Suillosporium. Oslo: Fungiflora 1984;1279-1449.
  26. Gilbertson RL, Ryvarden L. North American Polypores. Vol.1. Oslo: Fungiflora 1986;1-433.
  27. Gilbertson RL, Ryvarden L. North American Polypores. Vol.2. Oslo: Fungiflora 1987;437-885.
  28. Park YJ. Studies on the monitoring of fungal flora in Chiaksan National Park. Kangwon Natl. University; 2003.
  29. Jang SK. Distribution of higher fungi in NaeJangSan National Park. Kor J Mycol 2007;35:11-27. https://doi.org/10.4489/KJM.2007.35.1.011
  30. Kim NK. Studies on the flora of soil microorganisms and higher fungi by forest types in the Odaesan National Park. Kangwon National University; 2006.
  31. Ohenoja E. Effect of weather conditions on the larger fungi at different forest sites in northern Finland in 1976-1988. Acta Univ Ouluensis Ser A Sci Rerum Nat 1993;243:1-69.
  32. Jang SK, Kim SW. Relationship between higher fungi distribution and climatic factors in Naejangsan National Park. Kor J Mycol 2012;40:19-38. https://doi.org/10.4489/KJM.2012.40.1.019
  33. Park YJ, Sung JM, Kim YS, Seok SJ, Han SK. Studies on the monitoring of fungal flora in Chiaksan national park. Kangwon National University J Agr Life Environ Sci 2004;15:56-78.
  34. Bahram M, Põlme S, Koljalg U, Zarre S, Tedersoo L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 2012;193:465-473. https://doi.org/10.1111/j.1469-8137.2011.03927.x
  35. Watling R. Dawyck Botanic Garden: the Heron Wood Cryptogamic Project. Bot J Scotl 2004;56:109-118. https://doi.org/10.1080/03746600408685073
  36. Gange AC, Gange EG, Sparks TH, Boddy L. Rapid and recent changes in fungal fruiting patterns. Science 2007;316:71. https://doi.org/10.1126/science.1137489
  37. Kauserud H, Stige LC, Vik JO, Okland RH, Hoiland K, Stenseth NC. Mushroom fruiting and climate change. Proc Natl Acad Sci USA 2008;105:3811-3814. https://doi.org/10.1073/pnas.0709037105
  38. Park YW, Koo CD, Lee HY, Ryu SR, Kim TH, Cho YG. Relationship between macrofungi fruiting and environmental factors in Songnisan National Park. Kor J Environ Ecol 2010;24: 657-679.

피인용 문헌

  1. Relationship between Climatic Factors and Occurrence of Ectomycorrhizal Fungi in Byeonsanbando National Park vol.44, pp.4, 2016, https://doi.org/10.4489/KJM.2016.44.4.220
  2. Relationship between Ectomycorrhizal Fruiting Bodies and Climatic and Environmental Factors in Naejangsan National Park vol.43, pp.2, 2015, https://doi.org/10.5941/MYCO.2015.43.2.122
  3. The family Amanitaceae: molecular phylogeny, higher-rank taxonomy and the species in China vol.91, pp.1, 2018, https://doi.org/10.1007/s13225-018-0405-9