DOI QR코드

DOI QR Code

계단을 지나는 천수 흐름의 모의에서 내부 경계조건으로서 정확해의 부여에 관한 연구

A Study on Imposing Exact Solutions as Internal Boundary Conditions in Simulating Shallow-water Flows over a Step

  • 황승용 (한국건설기술연구원 수자원.환경연구본부 하천해안연구실)
  • 투고 : 2013.09.05
  • 심사 : 2013.10.04
  • 발행 : 2014.04.01

초록

이 연구에서는 계단과 같이 불연속 횡단 구조물을 지나는 천수 흐름에 대해 내부 경계조건으로서 정확해를 부여하는 기법을 제안하였다. 제안된 기법의 검토를 위해 MUSCL이 적용된 HLLL 근사 Riemann 해법을 이용하였다. 계단을 지나는 천수 흐름에 대한 다양한 문제에서 모의 결과는 정확해와 잘 일치하였다. 또한, 계단에서 댐 붕괴 실험 및 급경사 수로 실험의 결과와 부합되었다. 개발된 모형으로 낙차공과 같이 불연속 바닥을 지나는 천수 흐름에 대해 별도의 수위-유량 관계나 지형의 완화 없이 모의가 가능하다. 향후, 계단에 의한 흐름 저항과 수맥에 의한 에너지 손실에 대해 적절한 평가가 이루어진다면, 보나 옹벽(강변 도로)과 같은 불연속 지형을 넘나드는 천수 흐름에 대한 수치모의가 가능할 것으로 기대된다.

In this study, was proposed a numerical scheme imposing exact solutions as the internal boundary conditions for the shallow-water flows over a discontinuous transverse structure such as a step. The HLLL approximate Riemann solver with the MUSCL was used for the test of the proposed scheme. Very good agreement was obtained between simulations and exact solutions for various problems of the shallow-water flows over a step. In addition, results by the numerical model showed good agreement with those of dam-break experiments over a step and stepped chute one. Developed model can simulate the shallow-water flows over discontinuous bottom such as a drop structure without additional rating curve or topography smoothing. Given the proper evaluations for the flow resistance by a step and the energy loss by the nappe flow in the future, could be simulated flooding and drying of the shallow-water flows over discontinuous topography such as a weir or the river road with retaining wall.

키워드

참고문헌

  1. Alcrudo, F. and Benkhaldoun, F. (2001). "Exact solutions to the Riemann problem of the shallow water equations with a bottom step." Comput. Fluids, Vol. 30, pp. 643-671. https://doi.org/10.1016/S0045-7930(01)00013-5
  2. Bernetti, R., Titarev, V. A. and Toro, E. F. (2008). "Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry." J. Comput. Phys., Vol. 227, pp. 3212-3243. https://doi.org/10.1016/j.jcp.2007.11.033
  3. Bukreev, V. I. and Gusev, A. V. (2003). "Gravity waves due to discontinuous decay over an open-channel bottom drop." J. Appl. Mech. Tech. Phys., Vol. 44, pp. 506-515. https://doi.org/10.1023/A:1024244907059
  4. Chanson, H. (1994). Hydraulic design of stepped cascades, channels, weirs, and spillways. Pergamon.
  5. Chanson, H. (2003). Sudden flood release down a stepped cascade. Unsteady air-water flow measurements. Applications to wave run-up, flash flood and dam break wave. Rep. No. CH51/03, Univ. of Queensland.
  6. Chanson, H. and Toombes, L. (2002). "Energy dissipation and air entrainment in stepped storm waterway: Experimental Study." J. Irrig. Drain. Eng., Vol. 128, pp. 305-315. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:5(305)
  7. Chinnayya, A., LeRoux, A.-Y. and Seguin, N. (2004). "A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: The Resonance Phenomenon." Int. J. Finite Vol., Vol. 1, pp. 1-33.
  8. Cunge, J. A., Holly, F. M. and Verwey, A. (1980). Practical aspects of computational river hydraulics, Pitman.
  9. de Marinis, G., Di Cristo, C., Evangelista, S. and Leopardi, A. (2009). "Dam break waves on stepped bottom." 33rd IAHR Congress, IAHR, pp. 1262-1268.
  10. Harten, A., Lax, P. D. and van Leer, B. (1983). "On upstream differencing and Godunov-type scheme for hyperbolic conservation laws." SIAM Rev., Vol. 25, pp. 35-61. https://doi.org/10.1137/1025002
  11. Henderson, F. M. (1966). Open channel flow, Macmillan.
  12. Hwang, S.-Y. (2013a). "Finite-volume model for shallow-water flow over uneven bottom." J. KWRA, Vol. 46, pp. 139-153 (in Korean).
  13. Hwang, S.-Y. (2013b). "Exact and approximate Riemann solvers for the shallow-water flows over a step." Proc. KWRA Conf., KWRA, p. 575 (in Korean).
  14. Hwang, S.-Y. (2013c). "Exact solutions of the Riemann problem for the shallow-water flow over a step to the dry-bed." Proc. 39th KSCE Conf., KSCE (in Korean).
  15. Hwang, S.-Y. and Lee, S. H. (2011). "An application of the multi-slope MUSCL to the shallow water equations." J. KWRA, Vol. 44, pp. 819-830 (in Korean).
  16. Hwang, S.-Y. and Lee, S. H. (2012). "An application of the HLLL approximate Riemann solver to the shallow water equations." Journal of the Korean Society of Civil Engineers, Vol. 32, pp. 21-27 (in Korean).
  17. Jin, M. and Fread, D. L. (1997). "Dynamic flood routing with explicit and implicit numerical solution schemes." J. Hydraul. Eng., Vol. 123, pp. 166-173. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(166)
  18. Jun, K. S. (1996). "A study on unsteady flow model including weir flow simulation." J. KWRA, Vol. 29, pp. 153-165 (in Korean).
  19. Jun, K. S., Kim, J. S. and Lee, S. H. (2007). "Enhancement of FLDWAV model for its application to the main reach of the Han River." J. KWRA, Vol. 40, pp. 135-146 (in Korean).
  20. Lauber, G. and Hager, W. (1998). "Experiments to dambreak wave: Horizontal Channel." J. Hydraul. Res., Vol. 36, pp. 297-307.
  21. LeFloch, P. G. and Thanh, M. D. (2011). "A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime." J. of Comput. Phys., Vol. 230, pp. 7631-7660. https://doi.org/10.1016/j.jcp.2011.06.017
  22. LeVeque, R. J. (1990). Numerical methods for conservation laws, Birkhauser.
  23. LeVeque, R. J. (2002). Finite volume method for hyperbolic problems, Cambridge Univ. Press.
  24. Richmeyer, R. D. and Morton, K. W. (1967). Difference methods for initial-value problems, John Wiley & Sons.
  25. Rosatti, G. and Begnudelli, L. (2010). "The Riemann problem for the one-dimensional, free-surface shallow water equations with a bed step: Theoretical analysis and numerical simulations." J. of Comput. Phys., Vol. 229, pp. 760-787. https://doi.org/10.1016/j.jcp.2009.10.010
  26. Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows, John Wiley & Sons.
  27. Zhou, J. G., Causon, D. M., Ingram, D. M. and Mingham, C. G. (2002). "Numerical solutions of the shallow water equations with discontinuous bed topography." Int. J. Numer. Meth. Fluids, Vol. 38, pp. 769-788. https://doi.org/10.1002/fld.243

피인용 문헌

  1. A Novel Scheme to Depth-averaged Model for Analyzing Shallow-water Flows over Discontinuous Topography vol.35, pp.6, 2015, https://doi.org/10.12652/Ksce.2015.35.6.1237