DOI QR코드

DOI QR Code

UHPCC 휨부재 제작 시 타설 중 충전방향에 따른 휨인장거동의 변화

Comparison of Flexural Tensile Behaviors with Different Filling Directions in Producing UHPCC Flexural Member

  • 강수태 (대구대학교 토목공학과) ;
  • 류금성 (한국건설기술연구원 인프라구조연구실) ;
  • 고경택 (한국건설기술연구원 인프라구조연구실) ;
  • 김선용 (한국수력원자력(주) 중앙연구원)
  • 투고 : 2013.06.14
  • 심사 : 2013.09.25
  • 발행 : 2014.04.01

초록

본 연구는 UHPCC (Ultra High Performance Cementitious Composites)에서 섬유배열 유도의 효율성을 평가하기 위한 연구의 일환으로, 흐름특성을 달리한 다양한 방법으로 UHPCC 부재를 제작하여 휨거동의 변화를 비교하고, 섬유 배열특성과의 상관관계를 정성적으로 분석하였다. 실험을 통해 섬유배열 유도방법에 따라 휨거동의 차이가 크게 나타남을 확인하였다. 일반적인 휨실험체 제작방법으로, 섬유가 주인장방향으로 배열되도록 유도한 경우가 다른 방법으로 제작된 휨실험체에 비해 더 높은 휨인장강도와 낮은 변동성을 보였다. 따라서 실제 UHPCC 부재에서의 재료의 휨인장강도는 실험실 수준에서 측정한 휨인장강도와 비교하여 크게 다를 수 있고, 변동성도 더 크게 나타날 수 있음을 반드시 고려해야 할 것이다. 한편, UHPCC의 유동흐름에 따른 섬유의 배열특성의 변화를 흐름의 종류 및 경계면 효과를 고려하여 정성적으로 예측하였으며, 이러한 예측결과는 실험에서 여러 가지 형태로 유도된 유동흐름에 따른 휨인장거동의 변화를 잘 설명하였다.

This study was intended to estimate the efficiency of inducing fiber arrangement in UHPCC (Ultra High Performance Cementitious Composites). For the purpose, UHPCC members produced by several different placing methods according to flow characteristics were prepared; flexural behaviors were compared and correlation between the flexural behavior and the characteristics of fiber arrangement was investigated. Test results showed that placing method for inducing specific fiber arrangement had a considerable influence on the flexural performance. The standard specimen in which fibers are induced to be directed parallel to the principle tensile direction presented higher flexural tensile strength but lower variation. Therefore it should be considered that the flexural tensile strength actually developed in UHPCC member may be highly different and in lager variation. The qualitative variation of fiber arrangement according to the flow of UHPCC was also predicted considering the flow pattern and the boundary effect; the prediction provided good explanation to the difference in the flexural behavior according to the induced flow.

키워드

참고문헌

  1. Chiba, K., Yasuda, K. and Nakamura, K. (2001). "Numerical solution of fiber suspension flow through a parallel plate channel by coupling flow field with fiber orientation distribution." Journal of Non-Newtonian Fluid Mechanics, Vol. 99, pp. 145-157. https://doi.org/10.1016/S0377-0257(01)00118-5
  2. Ferrara, L., di Prisco, M. and Lamperti, M. G. L. (2010). "Identification of the stress-crack opening behavior of HPFRCC: The Role of Flow-Induced Fiber Orientation." Proceedings of FraMCoS-7. Vol. 3., Jeju, Korea; pp. 1541-1550.
  3. Johnson, C. D. (1974). "Steel fiber reinforced mortar and concrete: A review of mechanical properties." Fiber Reinforced Concrete, ACI SP-44, American Concrete Institute, Detroit, pp. 127-142.
  4. JSCE (2004). Recommendations for design and construction of ultra high-strength fiber-reinforced concrete structures (draft), Japan Society of Civil Engineering, Japan (in Japanese).
  5. Kang, S. T. and Kim, J. K. (2011). "The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)." Cement and Concrete Research, Vol. 41, No. 10, pp. 1001-1014. https://doi.org/10.1016/j.cemconres.2011.05.009
  6. KCI (2012). Ultra high performance concrete K-UHPC structural design guideline, Korea Concrete Institute (in Korean).
  7. KICT (2012). Development of the advanced technology of toughness in ultra high performance concrete for hybrid stayed cable bridge, No. KICT 2012-079, Korea Institute of Construction Technology (in Korean).
  8. Kim, E. G., Park, J. K. and Jo, S. H. (2001). "A study on fiber orientation during the injection molding of fiber-reinforced polymeric composites (Comparison between image processing results and numerical simulation)." Journal of Materials Processing Technology, Vol. 111, pp. 225-232. https://doi.org/10.1016/S0924-0136(01)00521-0
  9. Koh, K. T., Park, J. J., Ryu, G. S. and Kim, S. W. (2013). "Stateof-the-art on development of ultra-high performance concrete." The Magazine of the Korean Society of Civil Engineers, KSCE, Vol. 61, No. 2, pp. 51-60 (in Korean).
  10. Kwon, S. H., Kang, S. T., Lee, B. Y. and Kim, J. K. (2012). "The variation of flow-dependent tensile behavior in radial flow dominant placing of ultra high performance fiber reinforced cementitious composites (UHPFRCC)." Construction and Building Materials, Vol. 33, pp. 109-121. https://doi.org/10.1016/j.conbuildmat.2012.01.006
  11. Lee, H. H. and Lee, H. J. (2004). "Characteristic strength and deformation of SFRC considering steel fiber factor and volume fraction." Journal of the Korea Concrete Institute, KCI, Vol. 16, No. 6, pp. 759-766 (in Korean). https://doi.org/10.4334/JKCI.2004.16.6.759
  12. Lee, Y., Kang, S. T. and Kim, J. K. (2010). "Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix." Construction and Building Materials, Vol. 24, No. 10, pp. 2030-2041. https://doi.org/10.1016/j.conbuildmat.2010.03.009
  13. Markovic I. (2006). High-performance hybrid-fiber concrete-development and utilisation, Ph.D. Dissertation, Delft University of Technology, Netherland.
  14. Naaman, A. E. (1972). A statistical theory of strength for fiber reinforced concrete, Ph.D. Dissertation, Massacusetts Institute of Technology, USA.
  15. Park, S. H., Kim, D. J., Ryu, G. S. and Koh K. T. (2012). "Tensile behavior of ultra high performance hybrid fiber reinforced concrete." Cement & Concrete Composites, Vol. 34, pp. 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  16. Richard, P. and Cheyrezy, M. (1995). "Composition of reactive powder concretes." Cement and Concrete Research, Vol. 25, No. 7, pp. 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
  17. SETRA/AFGC (2002). Ultra high performance fiber-reinforced concretes, SETRA/AFGC Interim Recommendations, SETRA, France.
  18. Swamy R. N. and Stavrides H. (1975). "Some properties of high workability steel fiber reinforced concrete by electro-magnetic method." Fibre Reinforced Cement and Concrete, A. M. Neville, Construction Press Ltd, Lancaster, pp. 197-208.
  19. Wuest, J., Denarie, E. and Bruhwiler, E. (2008). "Model for predicting the UHPFRC tensile hardening response." Proceedings of the second international symposium on ultra high performance concrete, University of Kassel, Kassel, Germany, pp. 153-160.
  20. Yoo, D. Y., Park, J. J., Kim, S. W. and Yoon, Y. S. (2012). "Properties and prediction model for ultra high performance fiber reinforced concrete (UHPFRC): (I) Evaluation of setting and shrinkage characteristics and tensile behavior." Journal of the Korean Society of Civil Engineer, KSCE, Vo. 32, No. 5A, pp. 307-315 (in Korean). https://doi.org/10.12652/Ksce.2012.32.5A.307