DOI QR코드

DOI QR Code

Evaluation of P-M Interaction Curve for Circular Concrete-Filled Tube (CFT) Column

원형 콘크리트 충전 강관(CFT) 기둥의 P-M 상관 곡선 평가

  • 문지호 (고려대학교 건축사회환경공학과) ;
  • 박금성 (한국건설기술연구원 미래건축연구실) ;
  • 이학은 (고려대학교 건축사회환경공학과)
  • Received : 2013.03.28
  • Accepted : 2014.02.09
  • Published : 2014.04.01

Abstract

Concrete-filled tubes (CFTs) have been used in civil engineering practices as a column of buildings and a bridge pier. CFTs have several advantages over the conventional reinforced concrete columns, such as rapid construction, enhanced buckling resistance, and inherited confinement effect. However, CFT component have not been widely used in civil engineering practice, since the design provisions among codes significantly vary each other. It leads to conservative design of CFT component. In this study, the design provisions of AISC and EC4 for CFT component were examined, based on the extensive test results conducted by previous researchers and finite element analysis results obtained in this study. Especially, the focus was made on the validation of P-M interaction curves proposed by AISC and EC4. From the results, it was found that the current design codes considerably underestimated the strength of CFT component under general combined axial load and bending. Finally, the modified P-M interaction curve was proposed and successfully verified.

원형 콘크리트 충전 강관(CFT)은 급속시공이 가능하고 뛰어난 좌굴 성능 및 콘크리트의 구속효과와 같은 여러 장점을 가지고 있어, 건축물의 기둥이나 교량의 교각으로 이용되고 있다. 하지만 CFT는 이러한 장점에도 불구하고 널리 이용되고 있지 않고 있다. 이러한 이유는 CFT의 설계기준들이 서로 상이하여 보수적인 설계가 이루어지고 있는 것에 일부 기인한다. 이 연구에서는 CFT설계에 널리 이용되는 AISC 및 EC4 설계기준의 타당성을 기존 연구자들이 수행한 실험 결과 및 이 연구에서 수행된 유한요소해석 결과를 이용하여 검증하였다. 특히 축력과 휨모멘트가 동시에 작용하는 CFT에 대하여 AISC 및 EC4에서 제안한 P-M 상관곡선의 타당성 검증에 초점을 두었다. 연구 결과, 기존의 P-M 상관곡선은 CFT의 강도를 상당히 보수적으로 예측하는 것을 알 수 있었다. 이 연구에서는 개선된 P-M 상관곡선을 제안하고 기존 실험 결과 및 이 연구에서 수행한 유한요소해석 결과를 이용하여 검증하였다.

Keywords

References

  1. ABAQUS (2010). Abaqus analysis user's manual version 6.10., Dassault Systemes Simulia Corp.
  2. ACI (2011). Building code requirements for structural concrete and commentary, Farmington Hills, Mich.
  3. AISC (2010). Specifications for structural steel buildings, Chicago, IL.
  4. Baltay, P. and Gjelsvik, A. (1990). "Coefficient of friction for steel on concrete at high normal stress." Journal of Materials in Civil Engineering, ASCE, Vol. 2, No. 1, pp. 46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
  5. Chronister, A. (2007). Experimental investigation of high strength concrete filled steel tubes in embedded column base foundation connections, MS Thesis, University of Washington, Seattle, WA.
  6. Elchalakani, M., Zhao, X. L. and Grzebieta, R. H. (2001). "Concretefilled circular steel tubes subjected to pure bending." Journal of Constructional Steel Research, Vol. 57, pp. 1141-1168. https://doi.org/10.1016/S0143-974X(01)00035-9
  7. Ellobody, E. and Young, B. (2006). "Nonlinear analysis of concretefilled steel SHS and RHS columns." Thin-Walled Structures, Vol. 44, pp. 919-930. https://doi.org/10.1016/j.tws.2006.07.005
  8. Elremaily, A. and Azizinamini, A. (2002). "Behavior and strength of circular concrete-filled tube columns." Journal of Constructional Steel Research, Vol. 58, pp. 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6
  9. Eurocode 4, European Committee for Standardisation, EN 1994-1-1 (2004). Design of composite steel and concrete structures, part 1.1 general rules and rules for buildings, European Union.
  10. Goode, C. D. and Lam, D. (2008). "Concrete-filled tube columns-Tests compared with Eurocode 4." Proc., Engineering Foundation Conf. on Composite Construction.
  11. Han, L. H., Lu, H., Yao, G. H. and Liao, F. Y. (2006). "Further study on the flexural behaviour of concrete-filled steel tubes." Journal of Constructional Steel Research, Vol. 62, pp. 554-565. https://doi.org/10.1016/j.jcsr.2005.09.002
  12. Hu, H. T., Huang, C. S., Wu, M. H. and Wu, Y. M. (2003). "Nonlinear analysis of axial loaded concrete-filled tube columns with confinement effect." Journal of Structural Engineering, ASCE, Vol. 129, No. 10, pp. 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  13. Hwang, W. S., Kim, D. J. and Jung, D. A. (2003). "Ultimate strength of CFT short columns considering the confining effect of concrete." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 3A, pp. 1011-1018 (in Korean).
  14. Kingsley, A. (2005). Experimental and analytical investigation of embedded column base connections for concrete filled high strength steel tubes. MS Thesis, Univ. of Washington, Seattle, WA.
  15. Lee, J. and Fenves, G. L. (1998). "Plastic-damage model for cyclic loading of concrete structures." Journal of Engineering Mechanics, ASCE, Vol. 124, No. 8, pp. 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  16. Lu, H., Han, L. H. and Zhao, X. L. (2009). "Analytical behavior of circular concrete-filled thin-walled steel tubes subjected to bending." Thin-Walled Structures, Vol. 47, pp. 346-358. https://doi.org/10.1016/j.tws.2008.07.004
  17. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989). "A plasticdamage model for concrete." International Journal of Solids and Structures, Vol. 25, pp. 299-329. https://doi.org/10.1016/0020-7683(89)90050-4
  18. Marson, J. and Bruneau, M. (2004). "Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-base detail." Journal of Bridge Engineering, ASCE, Vol. 9, No. 1, pp. 14-23. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(14)
  19. Moon, J., Ko, H. and Lee, H. E. (2012a). "Development of non-linear finite element modeling technique for circular concrete-filled tube (CFT)." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 3A, pp. 139-148 (in Korean). https://doi.org/10.12652/Ksce.2012.32.4C.139
  20. Moon, J., Lehman, D. E., Roeder, C. W. and Lee, H. E. (2012b). "Analytical modeling of bending of circular concrete-filled steel tubes." Engineering Structures, Vol. 42, pp. 349-361. https://doi.org/10.1016/j.engstruct.2012.04.028
  21. Moon, J., Lehman, D. E., Roeder, C. W. and Lee, H. E. (2013). "Strength of circular concrete-filled tubes (CFT) with and without internal reinforcement under combined loading." Journal of Structural Engineering, ASCE, Vol. 139, No. 12, 04013012. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000788
  22. Prion, H. G. L. and Boehme, J. (1994). "Beam-column behaviour of steel tubes filled with high strength concrete." Canadian Journal of Civil Engineering, Vol. 21, pp. 207-218. https://doi.org/10.1139/l94-024
  23. Roeder, C. W., Lehman, D. E. and Bishop, E. (2010). "Strength and stiffness of circular concrete filled tubes." Journal of Structural Engineering, ASCE, Vol. 136, No. 12, pp. 1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263
  24. Saenz, L. P. (1964). "Discussion of 'Equation for the stress-strain curve of concrete' by P. Desayi, and S. Krishnan." ACI Journal, Vol. 61, pp. 1229-1235.
  25. Thody, R. (2006). Experimental investigation of the flexural properties of high-strength concrete-filled steel tubes, MS Thesis, University of Washington, Seattle, WA.
  26. Williams, T. S. (2006). Experimental investigation of high strength concrete filled steel tubes in embedded column base foundation connections, MS Thesis, University of Washington, Seattle, WA.
  27. Zhang, G. W., Xiao, Y. and Kunnath, S. (2009). "Low-cycle fatigue damage of circular concrete-filled tube columns." ACI Structural Journal, Vol. 106, No. 2, pp. 151-159.