References
- Abo-Eleneen, Z. A. (2011). The entropy of progressively censored samples, Entropy, 13, 437-449. https://doi.org/10.3390/e13020437
- Andrews, F. C and Andrews, A. C. (1962). The form of the equilibrium distribution function, Trans-actions of the Kansas Academy of Science., 65, 247-256. https://doi.org/10.2307/3626424
- Baratpour, S. and Rad, A. H. (2012). Testing goodness-of-fit for exponential distribution based on cumulative residual entropy, Communications in Statistics-Theory and Methods, 41, 1387-1396. https://doi.org/10.1080/03610926.2010.542857
- Bowman, A. W. (1992). Density based tests for goodness-of-fit, Journal of Statistical Computation and Simulation, 40, 1-13. https://doi.org/10.1080/00949659208811361
- Dudewicz, E. and van der Meulen, E. (1981). Entropy based tests of uniformity, Journal of the American Statistical Association, 76, 967-974. https://doi.org/10.1080/01621459.1981.10477750
- Ebrahimi, N., Habibullah, M. and Soofi, E. S. (1992). Testing exponentiality based on Kullback-Leibler information, Journal of the Royal Statistical Society, 54, 739-748.
- Jaynes, E. T. (1957). Information theory and statistical mechanics, Physical Revies, 106, 620-630. https://doi.org/10.1103/PhysRev.106.620
- Kullback, S. (1959). Information Theory and Statistics, Wiley, New York.
- Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data, Wiley, New York.
- Mosayeb, A. and Borzadaran, M. G. R. (2013). Kullback-Leibler information in view of an extended version of k-records, Communications for Statistical Applications and Methods, 20, 1-13. https://doi.org/10.5351/CSAM.2013.20.1.001
- Nakamura, T. K. (2009). Relativistic equilibrium distribution by relative entropy maximization, Europhysics letters, 88, 40009. https://doi.org/10.1209/0295-5075/88/40009
- Park, S. (1995). The entropy of consecutive order statistics, IEEE Transactions on Information Theory, 41, 2003-2007. https://doi.org/10.1109/18.476325
- Park, S. (2005). Testing exponentiality based on Kullback-Leibler information with the type II cnesored data, IEEE Transactions on Reliability, 54, 22-26. https://doi.org/10.1109/TR.2004.837314
- Park, S. and Park, D. (2003). Correcting moments for goodness of fit tests based on two entropy estimates, Journal of Statistical Computation and Simulation, 73, 685-694. https://doi.org/10.1080/0094965031000070367
- Rao, M., Chen, Y., Vemuri, B. C. and Wang, F. (2004). Cumulative residual entropy: A new measure of information, IEEE Transactions on Information Theory, 50, 1220-1228. https://doi.org/10.1109/TIT.2004.828057
- Samanta, M. and Schwarz, C. J. (1988). The Shapiro-Wilk test for exponentiality based on censored data, Journal of the American Statistical Association, 83, 528-531. https://doi.org/10.1080/01621459.1988.10478628
- Soofi, E. S. (2000). Principal information theoretic approaches, Journal of the American Statistical Association, 95, 1349-1353. https://doi.org/10.1080/01621459.2000.10474346
- Stacy, E. W. (1962). A generalization of the Gamma distribution, Annals of Mathematical Statistics, 33, 1187-1192. https://doi.org/10.1214/aoms/1177704481
- Theil, H. (1980). The entropy of the maximum entropy distribution, Economics Letters, 5, 145-148. https://doi.org/10.1016/0165-1765(80)90089-0
- Wong, K. M. and Chen, S. (1990). The entropy of ordered sequences and order statistics, IEEE Transactions on Information Theory, 36, 276-284. https://doi.org/10.1109/18.52473
Cited by
- Exponentiality test based on Renyi distance between equilibrium distributions 2018, https://doi.org/10.1080/03610918.2017.1366514