DOI QR코드

DOI QR Code

0.85NaNbO3-0.15LiNbO3 세라믹스의 구조 및 전기적 특성

Structure and Electrical Properties of 0.85NaNbO3-0.15LiNbO3 Ceramics

  • 전창준 (한국세라믹기술원 지능형전자부품팀) ;
  • 정영훈 (한국세라믹기술원 지능형전자부품팀) ;
  • 윤지선 (한국세라믹기술원 지능형전자부품팀) ;
  • 남중희 (한국세라믹기술원 지능형전자부품팀) ;
  • 백종후 (한국세라믹기술원 지능형전자부품팀) ;
  • 조정호 (한국세라믹기술원 지능형전자부품팀)
  • Jeon, Chang Jun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young Hun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji Sun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Nam, Joong Hee (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong Hoo (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong Ho (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2013.12.18
  • 심사 : 2014.01.16
  • 발행 : 2014.03.31

초록

Structure and electrical properties of $0.85NaNbO_3-0.15LiNbO_3$ ($(Li_{0.15}Na_{0.85})NbO_3$) ceramics were investigated as a function of sintering temperature. $(Li_{0.15}Na_{0.85})NbO_3$ ceramics were prepared by conventional solid state processing. A main phase of the orthorhombic perovskite structure and secondary phase of $LiNbO_3$ were confirmed for all sintered specimens. Dense $(Li_{0.15}Na_{0.85})NbO_3$ ceramics were obtained at sintering temperature above $1050^{\circ}C$. With increasing sintering temperature, the electromechanical coupling factor ($k_p$), piezoelectric constant ($d_{33}$) and relative dielectric constant (${\varepsilon}_r$) of the sintered specimens increased, while the mechanical quality factor ($Q_m$) decreased. These results are due to the increase of grain size and crystallite size of orthorhombic perovskite structure. Based on the temperature dependence of ${\varepsilon}_r$, stable piezoelectric properties were expected because no phase transition found up to $300^{\circ}C$. Typically, kp of 18%, $d_{33}$ of 34.7 pC/N, ${\varepsilon}_r$ of 135, and $Q_m$ of 62.8 were obtained for the specimens sintered at $1200^{\circ}C$ for 5 h.

키워드

참고문헌

  1. H. G. Moon, H. C. Song, S. J. Kim, J. W. Choi, C. Y. Kang, and S. J. Yoon, "Piezoelectric properties and microstructure of $0.01Pb(Mg_{1/2}W_{1/2})O_{3}-0.41Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.35PbTiO_{3}-0.23PbZrO_{3}$ thick film with particle size distribution", J. Sensor Sci. & Tech., vol. 17, no. 6, pp. 418-424, 2008. https://doi.org/10.5369/JSST.2008.17.6.418
  2. M. Ahtee, A. M. Glazer, and H. D. Megaw, "The structures of sodium niobate between $480^{\circ}$ and $575{^{\circ}C}$, and their relevance to soft-phonon modes", Phil. Mag., vol. 26, no. 4, pp. 995-1014, 1972. https://doi.org/10.1080/14786437208226972
  3. K. Konieczny, "Pyroelectric and dielectric study of $NaNbO_{3}$ single crystals", Mater. Sci. Eng. B, vol. 60, no. 2, pp. 124-127, 1999. https://doi.org/10.1016/S0921-5107(99)00004-5
  4. H. Shi, X. Li, D. Wang, Y. Yuan, Z. Zou, and J. Ye, "$NaNbO_{3}$ nanostructures: facile synthesis, characterization, and their photocatalytic properties", Catal. Lett., vol. 132, no. 1-2, pp. 205-212, 2009. https://doi.org/10.1007/s10562-009-0087-8
  5. J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, "Hydrothermal synthesis and photocatalytic properties of $ATaO_{3}$ and $ANbO_{3}$ (A = Na and K)", Int. J. Hydrogen Energy, vol. 32, no. 13, pp. 2269-2272, 2007. https://doi.org/10.1016/j.ijhydene.2006.10.005
  6. S. Lanfredi, L. Dessemond, and A. C. Martins Rodrigues, "Dense ceramics of $NaNbO_{3}$ produced from powders prepared by a new chemical route", J. Eur. Ceram. Soc., vol. 20, no. 7, pp. 983-990, 2000. https://doi.org/10.1016/S0955-2219(99)00223-X
  7. L. Pardo, P. Duran-Martin, J. P. Mercurio, L. Nibou, and B. Jimenez, "Temperature behaviour of structural, dielectric and piezoelectric properties of sol-gel processed ceramics of the system $LiNbO_{3}$-$NaNbO_{3}$", J. Phys. Chem. Solids, vol. 58, no. 9, pp. 1335-1339, 1997. https://doi.org/10.1016/S0022-3697(97)00034-6
  8. H. D. Megaw and M. Wells, "The space group of $NaNbO_{3}$ and $(Na_{0.995}K_{0.005})NbO_{3}$", Acta Crystallogr., vol. 11, no. 12, pp. 858-862, 1958. https://doi.org/10.1107/S0365110X58002437
  9. A. C. Sakowski-Cowley, K. Lukaszewicz, and H. D. Megaw, "The structure of sodium niobate at room temperature, and the problem of reliability in pseudosymmetric structures", Acta Crystallogr. B, vol. 25, no. 5, pp. 851-865, 1969. https://doi.org/10.1107/S0567740869003141
  10. Yu. I. Yuzyuk, E. Gagarina, P. Simon, L. A. Reznitchenko, L. Hennet, and D. Thiaudiere, "Synchrotron x-ray diffraction and Raman scattering investigations of $(Li_{x}Na_{1-x})NbO_{3}$ solid solutions: Evidence of the rhombohedral phase", Phys. Rev. B, vol. 69, no. 14, pp. 144105, 2004. https://doi.org/10.1103/PhysRevB.69.144105
  11. R. Jimenez, M. L. Sanjuan, and B. Jimenez, "Stabilization of the ferroelectric phase and relaxor-like behaviour in low Li content sodium niobates", Phys. Rev. B, vol. 16, no. 41, pp. 7493-7510, 2004.
  12. A. M. Glazer, "Simple ways of determining perovskite structures", Acta Crystallogr. A, vol. 31, no. 6, pp. 756-762, 1975. https://doi.org/10.1107/S0567739475001635
  13. R. C. R. Franco, E. R. Camargo, M. A. L Nobre, E. R. Leite, E. Longo, and J. A. Varela, "Dielectric properties of $Na_{1-x}Li_{x}NbO_{3}$ ceramics from powders obtained by chemical synthesis", Ceram. Int., vol. 25, no. 5, pp. 455-460, 1999. https://doi.org/10.1016/S0272-8842(98)00054-6
  14. R. Chen, Y. Wang, Y. Hu, Z. Hu, and C. Liu, "Modification on luminescent properties of $SrAl_{2}O_{4}:Eu^{2+}$, $Dy^{3+}$ phosphor by $Yb^{3+}$ ions doping", J. Lumin., vol. 128, no. 7, pp. 1180-1184, 2008. https://doi.org/10.1016/j.jlumin.2007.11.094
  15. C. Chaker, W. E. Gharbi, N. Abdelmoula, A. Simon, H. Khemakhem, and M. Maglione, "$Na_{1-x}Li_{x}NbO_{3}$ ceramics studied by X-ray diffraction, dielectric, pyroelectric, piezoelectric and Raman spectroscopy", J. Phys. Chem. Solids, vol. 72, no. 10, pp. 1140-1146, 2011. https://doi.org/10.1016/j.jpcs.2011.07.002