DOI QR코드

DOI QR Code

Development of Lotus Root Bugak with Plasma Lipid Reduction Capacity by Addition of Opuntia ficus-indica var. saboten or Green Tea as a Coloring Agent

백년초 및 녹차 가루 첨가 연근 부각의 지질저하 기능성

  • Kim, Mijeong (Dept. of Food Science and Nutrition, and Kimchi Research Institute Pusan National University) ;
  • Hong, Sun Hee (Dept. of Food Science and Nutrition, and Kimchi Research Institute Pusan National University) ;
  • Chung, Lana (College of Hotel and Tourism Management, Kyunghee University) ;
  • Choe, Eunok (Dept. of Food and Nutrition, Inha University) ;
  • Song, Yeong-Ok (Dept. of Food Science and Nutrition, and Kimchi Research Institute Pusan National University)
  • 김미정 (부산대학교 식품영양학과 및 김치연구소) ;
  • 홍선희 (부산대학교 식품영양학과 및 김치연구소) ;
  • 정라나 (경희대학교 호텔관광대학) ;
  • 최은옥 (인하대학교 식품영양학과) ;
  • 송영옥 (부산대학교 식품영양학과 및 김치연구소)
  • Received : 2013.11.18
  • Accepted : 2013.11.27
  • Published : 2014.03.31

Abstract

The purpose of this study was to develop functional lotus root bugak with plasma lipid reduction capacity by controlling the color of batter used for bugak preparation. Lotus root, nearly colorless, was selected to observe color effects. Gardeniae fructus (GF), Opuntia ficus-indica var. saboten (OF), and green tea (GT), which are colored yellow, red, and green, respectively, were used as coloring agents. Fermented glutinous rice was prepared naturally during winter season by placing glutinous rice and water (1:2, w/w) together in a crock pot for 7 days. Coloring materials (10%, w/w) were blended with glue made from fermented glutinous rice flour to prepare the batter. Cooked lotus root was then mixed with a 1.1-fold amount of batter (w/w) and dried at room temperature. Lotus root bugak (LRB) is pan-fried with un-roasted sesame oil, which is traditionally used as frying oil in Korea. Low-density lipoprotein receptor knockout ($LDLr^{-/-}$) mice (n=36) were fed an atherogenic diet (AD) containing various types of LRB (10 g%) for 10 weeks. Plasma triglyceride, total cholesterol, and LDL-C concentrations decreased significantly in mice fed LRB prepared with OF batter (OFB) and GT batter (GTB) (P<0.05). Protein expression levels of fatty acid synthase (FAS) and 3-hydroxyl-3-methylglutaryl coenzyme A reductase (HMGCR) in the OFB and GTB groups were suppressed compared with the LRB group (P<0.05). In accordance with the results on FAS and HMGCR expression, sterol regulatory element binding protein-I and II (SREBP-I and II), which are responsible for the regulation of FAS and HMGCR gene expression, respectively, were down-regulated compared to the LRB group (P<0.05). In conclusion, the plasma lipid reduction activities of OFB and GTB could be mediated through down-regulation of FAS and HMGCR mRNA expression via suppression of regulatory molecules, SREBP-I and II, in $LDLr^{-/-}$ mice.

본 연구는 한국 전통부각 제조방법을 이용하여 부각을 부식으로뿐만 아니라 스낵의 용도로도 사용할 수 있게 개발하고자 하였다. 부각 제조가 상대적으로 간편하며 원료 자체의 색상이 거의 없는 연근을 선정하여 여기에 빨강, 녹색 그리고 노란색을 낼 수 있도록 천연 기능성 색소 소재로 백년초, 녹차 그리고 치자 가루를 사용하였다. 이들 기능성 색소 재료를 삭힌 찹쌀풀 제조 후 첨가하여 다양한 부각을 만들고 이를 말린 후 생 참기름에 튀겨 동맥경화식이에 10%가 되도록 첨가하여 $LDLr^{-/-}$ 마우스에 10주간 섭취시켜 지질저하 기능성을 비교하였다. 실험군은 동맥경화유발식이를 섭취한 wild type mice 대조군(WC), $LDLr^{-/-}$ mice 대조군(CON), 그리고 동맥경화식이에 다양한 연근부각을 첨가한 연근부각군(LRB), 백년초연근부각군(OFB), 녹차연근부각군(GTB), 그리고 치자연근부각군(GFB)의 총 7군이었다. 부각의 효과를 비교하기 위하여 제한식이를 실시하였다. CON의 혈중 지질 농도는 WC에 비해 유의적으로 높았으며, LRB의 혈중 TG, TC 그리고 LDL-C 농도는 CON에 비해 유의적으로 낮았다(P<0.05). 기능성 색소 재료 첨가에 따른 지질저하 기능성을 살펴보았을 때 OFB와 GTB군의 혈중 TG, TC 그리고 LDL-C 농도가 LRB군에 비해 유의적으로 낮았다(P<0.05). 간의 지방산 합성 효소인 FAS와 콜레스테롤 합성 효소인 HMGCR의 발현 역시 OFB와 GTB군에서 LRB군에 비해 유의적 낮아(P<0.05) 혈중 지질 농도 결과와 일치하였다. 그러나 GFB군의 혈중 지질 농도는 LRB군보다 낮았으나 유의적인 차이를 보이지 않았고, FAS 및 HMGCR 발현 역시 유의적인 차이를 보이지 않았다. FAS 및 HMGCR의 mRNA 발현을 조절하는 전사인자인 SREBP-1과 2의 발현을 살펴보았을 때, OFB군과 GTB군은 LRB군에 비해 각각 유의적으로 낮았으나(P<0.05) GFB군에서는 발현 정도가 낮기는 하였으나 유의적이지 않았다. 이상의 결과로부터 백년초와 녹차 가루를 첨가하여 제조한 연근부각은 $LDLr^{-/-}$ 마우스의 간에서 지방산과 콜레스테롤의 생합성 억제를 통해 혈중 지질의 농도를 낮추는 효과가 있음을 확인하였다.

Keywords

References

  1. Yoon GS, Song YS. 1996. A study on the knowledge and utilization of Korea traditional basic side dishes II: Dried side dishes and jabans. Korean J Dietary Culture 11: 393-400.
  2. Kim M, Hong SH, Chung L, Yang JE, Choe E, Song YO. 2014. Superiority of traditional cooking process for bugak (Korean traditional fried dish) for plasma lipid reduction. J Med Food 17: 57-66. https://doi.org/10.1089/jmf.2013.3057
  3. Hegsted DM, Ausman LM, Johnson JA, Dallal G. 1993. Dietary fat and serum lipids: an evaluation of the experimental data. Am J Clin Nutr 57: 875-883.
  4. Saguy IS, Dana D. 2003. Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. J Food Eng 45: 143-152.
  5. Makinson JG, Greenfield H, Wong ML, Willis RBH. 1987. Fat uptake during deep-fat frying of coated and uncoated foods. J Food Comp Anal 1: 93-101. https://doi.org/10.1016/0889-1575(87)90017-2
  6. Shih F, Daigle K. 1999. Oil uptake properties of fried batters from rice flour. J Agric Food Chem 47: 1611-1615. https://doi.org/10.1021/jf980688n
  7. Yang D, Wang Q, Ke L, Jiang J, Ying T. 2007. Antioxidant activities of various extracts of lotus (Nelumbo nuficera Gaertn) rhizome. Asia Pac J Clin Nutr 16: 158-163.
  8. Du H, Zhao X, You JS, Park JY, Kim SH, Chang KJ. 2010. Antioxidant and hepatic protective effects of lotus root hot water extract with taurine supplementation in rats fed a high fat diet. J Biomed Sci 17: S39. https://doi.org/10.1186/1423-0127-17-S1-S39
  9. Saleem M, Kim HJ, Han CK, Jin C, Lee YS. 2006. Secondary metabolites from Opuntia ficus-indica var. saboten. Phytochemistry 67: 1390-1394. https://doi.org/10.1016/j.phytochem.2006.04.009
  10. Lee SP, Whang K, Ha YD. 1998. Functional properties of mucilage and pigment extracted from Opuntia ficus-indica. J Korean Soc Food Sci Nutr 27: 821-826.
  11. Bursill CA, Abbey M, Roach PD. 2007. A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol-fed rabbit. Atherosclerosis 193: 86-93. https://doi.org/10.1016/j.atherosclerosis.2006.08.033
  12. Yang M, Wang C, Chen H. 2001. Green oolong and black tea extracts modulate lipid metabolism in hyperlipidemia rats fed high-sucrose diet. J Nutr Biochem 12: 14-20. https://doi.org/10.1016/S0955-2863(00)00140-6
  13. Wu LY, Juan CC, Ho LT, Hsu YP, Hwang LS. 2004. Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats. J Agric Food Chem 52: 643-648. https://doi.org/10.1021/jf030365d
  14. Wang X, Tian W. 2001. Green tea epigallocatechin gallate: a natural inhibitor of fatty-acid synthase. Biochem Biophys Res Commun 288: 1200-1206. https://doi.org/10.1006/bbrc.2001.5923
  15. Wang X, Song KS, Guo QX, Tian W. 2003. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem Pharmacol 66: 2039-2047. https://doi.org/10.1016/S0006-2952(03)00585-9
  16. Lee IA, Lee JH, Baek NI, Kim DH. 2005. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull 28: 2106-2110. https://doi.org/10.1248/bpb.28.2106
  17. Bachmanov AA, Reed DR, Beauchamp GK, Tordoff MG. 2002. Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet 32: 435-443. https://doi.org/10.1023/A:1020884312053
  18. Friedwald WT, Levy RT, Fridrickson DS. 1972. Estimation of the concentration of low density lipoprotein cholesterol in plasma without the use of the preparative ultracentrifuge. Clin Nutr 18: 499-502.
  19. Villagran MD, Chester W, Toman LJ, Byars KD, Cawes NC, Zimmerman SP. 1995. Process for making reduced-fat fried snacks with lighter, more expanded snack structures. US Patent 5,464,642.
  20. Lim YH, Lee HY, Jang MS. 1993. Changes of physicochemical properties of soaked glutinous rice during preparation of Yu-Kwa. Korean J Food Sci Technol 25: 247-251.
  21. Lee J, Lee Y, Choe E. 2008. Effects of sesamol, sesamin, and sesamolin extracted from roasted sesame oil on the thermal oxidation of methyl linoleate. LWT-Food Sci Technol 41: 1871-1875. https://doi.org/10.1016/j.lwt.2007.11.019
  22. Hirose N, Inoue T, Nishihara K, Sugano M, Akimoto K, Shimizu S, Yamada H. 1991. Inhibition of cholesterol absorption and synthesis in rats by sesamin. J Lipid Res 32: 629-638.
  23. Suzuki T, Kumazoe M, Kim Y, Yamashita S, Nakahara K, Tsukamoto S, Sasaki M, Hagihara T, Tsurudome Y, Huang Y, Yamamoto MM, Shinoda Y, Yamaguchi W, Yamada K, Tachibana H. 2013. Green tea extract containing a highly absorbent catechin prevents diet-induced lipid metabolism disorder. Sci Rep 3: 2749. https://doi.org/10.1038/srep02749
  24. Oh PS, Lim KT. 2006. Glycoprotein (90 kDa) isolated from Opuntia ficus-indica var. saboten MAKINO lowers plasma lipid level through scavenging of intracellular radicals in triton WR-1339-induced mice. Biol Pharm Bull 29: 1391-1396. https://doi.org/10.1248/bpb.29.1391
  25. Fernandez ML, Trejo A, Mcnamara DJ. 1990. Pectin isolated from pickly pear (Opuntia sp.) modifies low-density lipoprotein metabolism in cholesterol-fed guinea pigs. J Nutr 120: 1283-1290.
  26. Raederstorff DG, Schlachter MF, Elste V, Weber P. 2003. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem 14: 326-332. https://doi.org/10.1016/S0955-2863(03)00054-8
  27. Slim K, Tsimidou M, Biliaderis CG. 2000. Kinetic studies of degradation of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chem 71: 199-206. https://doi.org/10.1016/S0308-8146(00)00156-4
  28. Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL. 1996. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 98: 1575-1584. https://doi.org/10.1172/JCI118951
  29. Smith S. 1994. The animal fatty acid synthase: one gene, one polypeptide, even enzymes. FASEB J 8: 1248-1259.
  30. Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R, Collins JL, Osborne TF, Tontonoz P. 2002. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem 277: 11019-11025. https://doi.org/10.1074/jbc.M111041200
  31. Agheli N, Kabir M, Berni-Canani S, Petitjean E, Boussairi A, Luo J, Bornet F, Slama G, Rizkalla SW. 1998. Plasma lipids and fatty acid synthase activity are regulated by shortchain fructo-oligosaccharides in sucrose-fed insulin-resistant rats. J Nutr 128: 1283-1288.
  32. Shimano H. 2009. SREBPs: physiology and pathophysiology of the SREBP family. FEBS J 276: 616-621. https://doi.org/10.1111/j.1742-4658.2008.06806.x
  33. Yasui K, Paeng N, Miyoshi N, Suzuki T, Taguchi K, Ishigami Y, Fukutomi R, Imai S, Isemura M, Nakayama T. 2012. Effects of a catechin-free fraction derived from green tea on gene expression of enzymes related to lipid metabolism in the mouse liver. Biomed Res 33: 9-13. https://doi.org/10.2220/biomedres.33.9
  34. Brown MS, Goldstein JL. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331-340. https://doi.org/10.1016/S0092-8674(00)80213-5
  35. El-Sohemy A, Archer MC. 1999. Regulation of mevalonate synthesis in low density lipoprotein receptor knockout mice fed n-3 or n-6 polyunsaturate fatty acids. Lipids 34: 1037-1043. https://doi.org/10.1007/s11745-999-0455-8
  36. McPherson P, Gauthier A. 2004. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochem Cell Biol 82: 201-211. https://doi.org/10.1139/o03-090
  37. Marseille-Tremblay C, Gravel A, Lafond J, Mounier C. 2007. Effect of an enriched cholesterol diet during gestation on fatty acid synthase, HMG-CoA reductase and SREBP-1/2 expression in rabbits. Life Sci 81: 772-778. https://doi.org/10.1016/j.lfs.2007.07.016
  38. Luduc V, Jasmin-Belanger S, Poirier J. 2010. APOE and cholesterol homeostasis in Alzheimer's disease. Trends Mol Med 16: 469-477. https://doi.org/10.1016/j.molmed.2010.07.008
  39. Welch CL, Xia YR, Shechter I, Farese R, Mehrabian M, Mehdizadeh S, Warden CH, Lusis AJ. 1996. Genetic regulation of cholesterol homeostasis: chromosomal organization of candidate genes. J Lipid Res 37: 1406-1421.
  40. Namiki M. 2007. Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr 47: 651-673. https://doi.org/10.1080/10408390600919114

Cited by

  1. In Vitro Antioxidative Activity and Polyphenol and Tocopherol Contents of Bugak with Lotus Root, Dried Laver, or Perilla Leaf vol.30, pp.6, 2014, https://doi.org/10.9724/kfcs.2014.30.6.767
  2. Effects of gardenia seed, green tea, and cactus pear in rice batter on the chemical quality of lotus root bugak and frying oil vol.25, pp.4, 2016, https://doi.org/10.1007/s10068-016-0166-8
  3. Lipid oxidation-related characteristics of gim bugak (Korean fried cuisine with Porphyra) affected by frying oil vol.26, pp.3, 2017, https://doi.org/10.1007/s10068-017-0088-0
  4. Co-treatment with Fermented Black Raspberry and Red Ginseng Extracts Improves Lipid Metabolism and Obesity in Rats Fed with a High-fat and High-cholesterol Diet vol.47, pp.3, 2015, https://doi.org/10.9721/KJFST.2015.47.3.364
  5. A Study on Liking/Disliking Attributes of Commercial Yugwa (Korean oil pastry product) Containing Baeknyeoncho (Opuntia ficus-indica var. saboten) vol.31, pp.5, 2015, https://doi.org/10.9724/kfcs.2015.31.5.623
  6. 매생이(Capsosiphon fulvescens)를 이용한 김부각의 제조 및 품질특성 연구 vol.50, pp.2, 2017, https://doi.org/10.5657/kfas.2017.0139
  7. 백년초 분말을 첨가 제조한 양갱의 항산화활성과 품질 특성 vol.23, pp.4, 2017, https://doi.org/10.20878/cshr.2017.23.4.004