DOI QR코드

DOI QR Code

Rheological Characteristics of Highly Concentrated Polymer Bonded Explosive Simulant: Wall Slip, Thixotropy, and Flow Instability

고농축 복합화약 시뮬란트의 유변학적 특성: 벽면 미끄러짐, 틱소트로피, 유동불안정성

  • Lee, Sangmook (Division of Chemical Engineering, Dankook University) ;
  • Hong, In-Kwon (Division of Chemical Engineering, Dankook University) ;
  • Ahn, Youngjoon (Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Jae Wook (Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University)
  • 이상묵 (단국대학교 화학공학과) ;
  • 홍인권 (단국대학교 화학공학과) ;
  • 안영준 (서강대학교 화공생명공학과) ;
  • 이재욱 (서강대학교 화공생명공학과)
  • Received : 2013.10.23
  • Accepted : 2013.11.20
  • Published : 2014.03.25

Abstract

The rheological characteristics of highly concentrated polymer bonded explosive simulant were studied. Hydroxyl terminated polybutadiene (HTPB) and polyethylene plastomer (Exact) were used as binders. Sugar and Dechlorane particles whose physical properties are similar to research department explosive (RDX) were used as fillers. When HTPB was used, diethyl hexyl adipate (DEHA or DOA) was used as a plasticizer together for some cases. Highly concentrated suspensions were mixed in a batch melt mixer (Rheomixer 600, Haake) and rheological properties were measured by plate-plate and capillary rheometers. Wall slip phenomena, thixotropy with shear hysteresis, and flow instability were investigated as shear rate and amount of fillers changed.

고분자 결합제로 hydroxyl terminated polybutadiene(HTPB)와 폴리에틸렌 플라스토머인 Exact를 사용한 고농축 복합화약 시뮬란트의 유변학적 특성을 연구하였다. 충전제로서 설탕 및 research department explosive(RDX)와 물리적 특성이 유사한 Dechlorane을 사용하였다. HTPB 사용시에는 가소제로 diethyl hexyl adipate(DEHA or DOA)를 첨가하기도 하였다. 농축 현탁계의 혼화는 시그마 블레이드가 장착된 회분식 혼련기(Rheomix 600, Haake) 를 사용하였고 유변학적 물성은 평판-평판 레오미터 및 모세관 레오미터를 이용하였다. 고농축 결합제/충전제 현탁계의 벽면 미끄러짐 현상, 전단 히스테리시스에 따른 틱소트로피 거동, 전단속도 및 충전제 첨가에 따른 유동불안정성 변화를 조사하였다.

Keywords

Acknowledgement

Supported by : 국방과학연구소

References

  1. M. R. Kamal and A. Mutel, J. Polym. Eng., 5, 293 (1985). https://doi.org/10.1515/POLYENG.1985.5.4.293
  2. A. B. Metzner, J. Rheol., 29, 739 (1985). https://doi.org/10.1122/1.549808
  3. S. A. Khan and R. K. Prud'homme, Rev. Chem. Eng., 3, 205 (1987).
  4. R. J. Hunter, Foundations of Colloid Science, Oxford University Press, Oxford, 2001.
  5. L. E. Nielsen, Polymer Rheology, Marcel Dekker, New York, 1977.
  6. E. J. Hinch and L.G. Leal, J. Fluid Mech., 52, 683 (1972). https://doi.org/10.1017/S002211207200271X
  7. I. M. Krieger, Adv. Colloid Interface Sci., 3, 111 (1972). https://doi.org/10.1016/0001-8686(72)80001-0
  8. R. G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.
  9. H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam, 1989.
  10. G. N. Choi and I. M. Krieger, J. Colloid Interface Sci., 113, 101 (1986). https://doi.org/10.1016/0021-9797(86)90210-9
  11. U. Yilmazer, C. Gogos, and D. Kalyon, Polym. Compos., 10, 242 (1989). https://doi.org/10.1002/pc.750100406
  12. A. V. Ramamurthy, J. Rheol., 30, 337 (1986). https://doi.org/10.1122/1.549852
  13. O. Bartos and J. Holomek, Polym. Eng. Sci., 11, 324 (1971). https://doi.org/10.1002/pen.760110410
  14. G. V. Vinogradov, G. B. Froishteter, K. K. Trilisskii, and E. L. Smorodinskii, Rheol. Acta, 14, 765 (1975). https://doi.org/10.1007/BF01521405
  15. A. M. Kraynik and W. R. Schowalter, J. Rheol., 25, 95 (1981). https://doi.org/10.1122/1.549613
  16. Y. Cohen and A. B. Metzner, J. Rheol., 29, 67 (1985). https://doi.org/10.1122/1.549811
  17. G. Segre and A. Silberberg, Nature, 189, 209 (1961). https://doi.org/10.1038/189209a0
  18. G. Segre and A. Silberberg, J. Fluid Mech., 14, 115 (1962). https://doi.org/10.1017/S002211206200110X
  19. V. Seshadri and S. P. Sutera, Trans. Soc. Rheol., 14, 351 (1970). https://doi.org/10.1122/1.549167
  20. C. D. Han, Multiphase Flow in Polymer Processing, Academic Press, New York, 1981.
  21. U. Yilmazer, SPE ANTEC Technical Papers, 34, 1608 (1988).
  22. A. Yoshimura and R. K. Prud'homme, J. Rheol., 32, 53 (1988). https://doi.org/10.1122/1.549963
  23. T. Q. Jiang, A. C. Young, and A. B. Metzner, Rheol. Acta, 25, 397 (1986). https://doi.org/10.1007/BF01331511
  24. M. Mooney, J. Rheol., 2, 210 (1931). https://doi.org/10.1122/1.2116364
  25. B. Rabinowitsch, J. Physik. Chem., A145, 1 (1929).
  26. F. Soltani and U. Yilmazer, SPE ANTEC Technical Papers, 1, 1232 (1999).
  27. J. Nanda, A. Biswas, and A. Banerjee, Soft Matter, 9, 4198 (2013). https://doi.org/10.1039/c3sm27050e
  28. Z. Zhu, Rheol. Acta, 43, 373 (2004).