Experimental
For the synthesis of monodispersive SiO2 nanospheres, 25.0 mL of ethanol(l), 4.5 mL of deionized water (> 17 MΩ cm), 0.4 mL of 25% NH3(aq), and 1.6 mL of tetraethyl orthosilicate (l, 99%) were mixed and kept under stirring for 1 h. Produced SiO2 nanospheres were centrifuged with 10,000 rpm for 10 min and redispersed in 31.4 mL of ethanol three times.27,28 Platinum seeds were prepared by mixing 10 mg of H2PtCl6(s, 99.995%) in 10.0 mL of 35% HCl(aq), 10.0 mL of 0.20 M NaBH4(aq), and 10.0 mL of 0.30 g L−1 PVP(aq) at once. The products were centrifuged at 10,000 rpm for 10 min and redispersed in 30.0 mL of ethanol three times.29 In order to modify the surfaces of SiO2 hard templates with amino groups, 10.0 mL of SiO2 nanospheres- dispersed ethanol and 5.0 mL of 1.0 M (3-aminopropyl) triethoxysilane (l, 98%)-dissolved ethanol were mixed and kept under stirring for 2 h. Then, the reaction mixture was added with 5.0 mL of platinum seeds-dispersed ethanol and stirred for 1 h to attach platinum seeds on SiO2 nanospheres. For the transformation of platinum seeds into platinum shells, 4.0 mL of 2 days-aged 10 mM H2PtCl6(aq) and 2.0 mL of the above mixture were mixed, stirred for 1 h, added with 0.32 mL of 100 mM L-ascorbic acid(aq), and stirred for 1 h.30 Finally, 10.0 mL of HF(aq) and 1.0 mL of the above colloid were mixed and stirred for 2 min.31 The produced hollow platinum nanospheres were centrifuged at 10,000 rpm for 10 min and redispersed in 1.0 mL of ethanol three times.
TEM images were measured with a Carl Zeiss LIBRA 120 microscope while SEM images with a JEOL JSM-6700F microscope. Extinction spectra were obtained using a Scinco S-3000 UV/vis spectrophotometer.
References
- Kwak, J.-A.; Lee, D. K.; Jang, D.-J. Appl. Catal. B 2013, 142, 323.
- Kim, Y.; Jang, D.-J. Chem. Commun. 2013, 49, 8940. https://doi.org/10.1039/c3cc44226h
- Kim, J.-Y.; Lee, D.; Kim, H. J.; Lim, I.; Lee, W. I.; Jang, D.-J. J. Mater. Chem. A 2013, 1, 5982. https://doi.org/10.1039/c3ta10320j
- Kim, S. J.; Ah, C. S.; Jang, D.-J. J. Nanopart Res. 2009, 11, 2023. https://doi.org/10.1007/s11051-008-9565-y
- Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Gross, S.; Maragon, C.; Tondello, E. Coord. Chem. Rev. 2006, 205, 1294.
- Kim, S. J.; Ah, C. S.; Jang, D.-J. Adv. Mater. 2007, 19, 1064. https://doi.org/10.1002/adma.200601646
- Lu, H. M.; Meng, X. K. J. Phys. Chem. C 2010, 114, 1534. https://doi.org/10.1021/jp9106475
- Kim, M. R.; Lee, D. K.; Jang, D.-J. Appl. Catal. B 2011, 103, 253. https://doi.org/10.1016/j.apcatb.2011.01.036
- Kim, M. R.; Kim, S. J.; Jang, D.-J. Cryst. Growth Des. 2010, 10, 257. https://doi.org/10.1021/cg900880b
- Kim, M. R.; Jang, D.-J. Chem. Commun. 2008, 5218.
- Liang, A.; Liu, Q.; Wen, G.; Jiang, Z. Trends Anal. Chem. 2012, 37, 32. https://doi.org/10.1016/j.trac.2012.03.015
- Lopatynski, A. M.; Lopatynska, O. G.; Jay Guo, L.; Chegel, V. I. IEEE. Sens. J. 2011, 11, 361. https://doi.org/10.1109/JSEN.2010.2057418
- Averitt, R. D.; Westcott, S. L.; Halas, N. J. J. Opt. Soc. Am. B 1999, 16, 1824. https://doi.org/10.1364/JOSAB.16.001824
- Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springe Press: Berlin, Germany, 1995; p 275.
- Mie, G. Ann. Phys. 1908, 25, 377.
- Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797. https://doi.org/10.1021/cr0680282
- Aden, A. L.; Kerker, M. J. Appl. Phys. 1951, 22, 1242. https://doi.org/10.1063/1.1699834
- Noguez, C. J. Phys. Chem. C 2007, 111, 3806. https://doi.org/10.1021/jp066539m
- Zhu, S.; Zhou, W. J. Nanomaterials 2010, 2010, 1.
- Neeves, A. E.; Birnboim, M. H. J. Opt. Soc. Am. B 1989, 6, 787. https://doi.org/10.1364/JOSAB.6.000787
- Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater. 2008, 20, 3987. https://doi.org/10.1002/adma.200800854
- Zhu, J.; Wang, Y.; Huang, L.; Lu, Y. Phys. Lett. A 2004, 323, 455. https://doi.org/10.1016/j.physleta.2004.02.038
- Mulvaney, P. Langmuir 1996, 12, 788. https://doi.org/10.1021/la9502711
- Penninkhof, J. J.; Moroz, A.; van Blaaderen, A.; Polman, A. J. Phys. Chem. C 2008, 112, 4146.
- Jain, P. K.; Huang, X.; El-Sayed, I. H. Acc. Chem. Rev. 2008, 41, 1578. https://doi.org/10.1021/ar7002804
- Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.; Beermann, J.; Reinhardt, C.; Kiyan, R.; Bozhevolnyi, S. I.; Chichkov, B. N. App. Phys. B 2012, 106, 841. https://doi.org/10.1007/s00340-011-4727-5
- Stober, W.; Fink, A.; Bohn, E. J. Collid. Interf. Sci. 1968, 26, 62. https://doi.org/10.1016/0021-9797(68)90272-5
- Kim, M. R.; Kim, J.-Y.; Kim, S. J.; Jang, D.-J. Appl. Catal. A 2011, 393, 317. https://doi.org/10.1016/j.apcata.2010.12.013
- Calderone, V. R.; Schutz-Widoniak, J.; Bezemer, G. L.; Bakker, G.; Steurs, C.; Philipse, A. P. Catal. Lett. 2010, 137, 132. https://doi.org/10.1007/s10562-010-0359-3
- Li, J.; Yang, C.; Zhang, L.; Ma, T. J. Organomet. Chem. 2011, 696, 1845. https://doi.org/10.1016/j.jorganchem.2011.02.021
- Liu, B.; Zhang, W.; Feng, H.; Yang, X. Chem. Commun. 2011, 47, 11727. https://doi.org/10.1039/c1cc13717d
Cited by
- Preparation of THPC-generated silver, platinum, and palladium nanoparticles and their use in the synthesis of Ag, Pt, Pd, and Pt/Ag nanoshells vol.6, pp.72, 2016, https://doi.org/10.1039/C6RA10717F
- Research of the structure of a-C<Pd>films by the Raman spectroscopy method vol.25, pp.p1, 2014, https://doi.org/10.1016/j.matpr.2019.11.105