DOI QR코드

DOI QR Code

Development of intelligent fault diagnostic system for mechanical element of wind power generator

지능형 풍력발전 기계적 요소 고장진단 시스템 개발

  • Moon, Dea-Sun (School of Electronic & Information Engineering, Kunsan University) ;
  • Kim, Sung-Ho (Department of Control & Robotics Engineering Kunsan University)
  • 문대선 (군산대학교 전자정보공학부) ;
  • 김성호 (군산대학교 제어로봇공학과)
  • Received : 2013.09.01
  • Accepted : 2013.11.25
  • Published : 2014.02.25

Abstract

Recently, a rapid growth of wind power system as a leading renewable energy source has compelled a number of companies to develop intelligent monitoring and diagnostic system. Such systems can detect early mechanical faults, which prevents from costly repairs. Generally, fault diagnostic system for wind turbines is based on vibration and process signal analysis. In this work, different type of mechanical faults such as mass unbalance and shaft misalignment which can always happen in wind turbine system is considered. The proposed intelligent fault diagnostic algorithm utilizes artificial neural network and Wavelet transform. In order to verify the feasibility of the proposed algorithm, mechanical fault generation experimental system manufactured by Gaon corporation is utilized.

최근 신재생 에너지원으로서의 선두주자인 풍력발전은 다수의 풍력발전 회사들로 하여금 모니터링 및 고장진단 시스템의 개발을 가속화시키고 있다. 이러한 모니터링 및 진단시스템은 조기의 고장검출을 통해 고장이 발생되었을 경우 발생되는 고가의 수리비용을 미연에 방지할 수 있게 한다. 일반적으로 풍력발전과 관련된 고장진단 시스템은 진동신호 및 신호분석기법에 기반하고 있다. 이에 본 연구에서는 풍력발전 시스템에서 자주 발생되고 있는 질량 불평형 및 축 정렬 불량 등과 같은 기계적인 고장을 효율적으로 진단할 수 있는 시스템을 제안하고자 한다. 본 연구에서 제안된 지능화된 고장진단 알고리즘은 인공신경망기법과 웨이블렛 변환을 이용한 것으로 (주)가온솔루션에서 개발한 풍력발전용 기계적 고장발생 장치에 적용 실험을 통해 제안된 진단기법의 유용성을 확인하고자 하였다.

Keywords

References

  1. Hameed. Z., Hong. Y.S., Cho. Y.M., Ahn. S.H., Song. C.K., "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, vol. 13, no. 1, pp. 1-39, 2009. https://doi.org/10.1016/j.rser.2007.05.008
  2. Park. K. T., Choi. J. S., Chung. D. H., "A Novel PV Tracking System Control Considering the Power Loss with Change of Insolation," Journal of the Korean Institute I lluminating and Electrical Installation Engineers, vol. 22, no. 6, pp. 89-99, 2008. https://doi.org/10.5207/JIEIE.2008.22.6.089
  3. Sanz-Bobi. M.A., Garcia. M.C., "SIMAP: intelligent system for predictive maintenance application to the health condition monitoring of a wind turbine gear box," Computers in Industry, vol. 57, pp. 552-568, 2006. https://doi.org/10.1016/j.compind.2006.02.011
  4. Caselitz. P., Giebhardt. J., "Rotor Condition Monitoring for Improved Operational Safety of Offshore Wind Energy Converters", Journal of Solar Energy Engineering, vol. 127, no.2, pp. 253-261, 2005. https://doi.org/10.1115/1.1850485
  5. Ahn. S.I., Choi. S.J., Kim. S.H., "Development of Fault diagnostic algorithm based on spectrum analysis of acceleration signal for wind turbine system," Journal of Korean Institute of Intelligent System, vol. 22, no. 6, pp. 675-680, 2012. https://doi.org/10.5391/JKIIS.2012.22.6.675
  6. Park. S. J., Kang. D. S., "Implementation of Real-time Monitoring System using the Neural Network for Automatic Failure Diagnosis of Offshore Wind," The Joural of Korean Information Technology, vol. 10, no. 7, pp193-198, 2012.
  7. Kim. Y. I., Yoo. H. H., "Prediction of the Performance Distributions and Manufacturing Yields of a MEMS Accelerometer," Journal of Mechanical Science and Technology, vol. 35, no. 7, pp. 791-798, 2011. https://doi.org/10.3795/KSME-A.2011.35.7.791
  8. Kim. S. Y., Kim. S. H., "Study on the Prediction of wind Power Generation Based on Artificial Neural Network," Journal of Institute of Control, Robotics and Systems, vol. 17, no. 11, pp. 1173-1178, 2011. https://doi.org/10.5302/J.ICROS.2011.17.11.1173
  9. Febin. D. J. L., Subbiah. V., Atif. I., Sanjeevikumar P., "Novel Wavelet-Fuzzy Based Indirect Field Oriented Control of Induction Motor Drives," Journal of Power Electronics, vol. 13, no. 4, pp. 656-668, 2013. https://doi.org/10.6113/JPE.2013.13.4.656
  10. Ahn. S. I., Choi. S. J., Kim. S. H., "Development of Fault Diagnostic Algorithm based on Spectrum Analysis of Acceleration Signal for Wind Turbine System," Journal of Korean Institute of Intelligent Systems, vol. 22, no. 6, pp. 675-680, 2012. https://doi.org/10.5391/JKIIS.2012.22.6.675