DOI QR코드

DOI QR Code

Microstructural Characteristics of Electro-Plated Cu Films by DC and Pulse Systems

DC, pulse 조건에 따른 구리 도금층 미세 조직 관찰

  • Yoon, Jisook (Education Program for Samsung Advanced Integrated Circuit, Pusan National University) ;
  • Park, Chansu (Department of Materials Science and Engineering, Pusan National University) ;
  • Hong, Soonhyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Hyunju (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Seungjun (Education Program for Samsung Advanced Integrated Circuit, Pusan National University) ;
  • Kim, Yangdo (Department of Materials Science and Engineering, Pusan National University)
  • 윤지숙 (부산대학교 차세대전자기판회로학과) ;
  • 박찬수 (부산대학교 재료공학부) ;
  • 홍순현 (부산대학교 재료공학부) ;
  • 이현주 (부산대학교 재료공학부) ;
  • 이승준 (부산대학교 차세대전자기판회로학과) ;
  • 김양도 (부산대학교 재료공학부)
  • Received : 2013.12.16
  • Accepted : 2014.02.12
  • Published : 2014.02.27

Abstract

The aim of this work was to investigate the effects of electrodeposition conditions on the microstructural characteristics of copper thin films. The microstructure of electroplated Cu films was found to be highly dependent on electrodeposition conditions such as system current and current density, as well as the bath solution itself. The current density significantly changed the preferred orientation of electroplated Cu films in a DC system, while the solution itself had very significant effects on microstructural characteristics in a pulse-reverse pulse current system. In the DC system, polarization at high current above 30 mA, changed the preferred orientation of Cu films from (220) to (111). However, Cu films showed (220) preferred orientation for all ranges of current density in the pulse-reverse pulse current system. The grain size decreased with increasing current density in the DC system while it remained relatively constant in the pulse-reverse pulse current system. The sheet resistance increased with increasing current density in the DC system due to the decreased grain size.

Keywords

References

  1. A. K. Sikder, A. Kumar, P. Shukla, P. B. Zantye, and M. Sanganaria, J. Electron. Mater., 32(10), 1028 (2003). https://doi.org/10.1007/s11664-003-0085-3
  2. M. Hasegawa, Y. Nonaka, Y. Negishi, Y. Okinaka, and T. Osaka, J. Electrochem. Soc., 153(2), C117 (2006). https://doi.org/10.1149/1.2149299
  3. W. H. The, L. T. Koh, S. M. Chen, J. Xie, C. Y. Li, and P. D. Foo, Microelectron. J. 32, 579 (2001). https://doi.org/10.1016/S0026-2692(01)00035-0
  4. D. S. Liu, C. Y. Chen, and Y. C. Chao, J. Electron. Mater., 35(5), 958 (2006). https://doi.org/10.1007/BF02692554
  5. G. Liu, Y. Kuo, S. Ahmed, D. N. Buckley, and T. Tanaka- Ahmed, J. Electrochem. Soc., 155(6), H432 (2008). https://doi.org/10.1149/1.2904937
  6. H. D. Merchant, M. G. Minor, and Y. L. Liu, J. Electron. Mater., 28(9), 998 (1999). https://doi.org/10.1007/s11664-999-0176-x
  7. T. Hatano, Y. Kurosawa, and J. Miyake, J. Electron. Mater., 29(5), 611 (2000). https://doi.org/10.1007/s11664-000-0054-z
  8. Young Ae Kim, Junho Chu, Jong Sung Lim, and Youn- Woo Lee, Theories and Applications of Chem. Eng., 12(1), 20 (2006).
  9. J. W. Jang, L.N. Ramanathan, J. Tang, D. R. Frear, J. Electron. Mater., 37(2), 185 (2007).
  10. Izumi OHNO, J. Met. Finish Soc. Jpn., 39(4), 149 (1988). https://doi.org/10.4139/sfj1950.39.149
  11. C. Barret and T. B. Massalski, "Structure of Metals," pp.204, Pergamon Press, Oxford, (1980).
  12. B. E. Sundquist, Acta. Met., 12, 67 (1964). https://doi.org/10.1016/0001-6160(64)90055-0