DOI QR코드

DOI QR Code

고강도 용착금속의 미세조직이 저온균열에 미치는 영향

The Effects of Microstructure on Cold Crack in High-Strength Weld Metals

  • Lee, Myung-Jin (Department of Materials Science and Engineering, Pusan National University) ;
  • Kang, Nam-Hyun (Department of Materials Science and Engineering, Pusan National University)
  • 투고 : 2014.02.03
  • 심사 : 2014.02.19
  • 발행 : 2014.02.28

초록

In the past, cold crack was commonly observed in the HAZ(heat affected zone) of high-strength steels. Applying to TMCP(thermo-mechanical controlled process) and HSLA(high strength low alloy) steels, cold crack tends to increase the occurrence in the weld metal. It is generally understood that cold crack occurs when the following factors are present simultaneously : diffusible hydrogen in the weld metal, a susceptible microstructure and residual stress. In particular, many studies investigated the microstructural effect on the cold crack in HAZ and the cold crack in weld metals starts to receive the special attendance in modern times. The purpose of the study is to review the effect of weld microstructures (grain boundary ferrite, Widm$\ddot{a}$nstatten ferrite, acicular ferrite, bainite and martensite) on cold crack in the weld metals. Among various microstructures of weld metals, acicular ferrite produced the greatest resistance to the cold crack due to the fine interlocking nature and high-angle grain boundary of the microstructure.

키워드

참고문헌

  1. N. bailey and M. D. Wright : Weldability of High Strength Steels, Welding and Metal Fabrication, (1993), 389-396
  2. H. J. Yi, Y. J. Lee, J. Y. Kim, S. S. Kang : Effect of microstructure and chemical composition on cold crack susceptibility of high strength weld metal, Journal of Mechanical Science and Technology, 25 (2011), 2185-2190 https://doi.org/10.1007/s12206-011-0529-2
  3. H. J. Kim, B. Y. Kang : Microstructural characteristics of steel weld metal, Journal of KWS, 18-5 (2000), 565-572 (in Korean)
  4. D. S. Tayler, G. M. Evans : Development of MMA electrodes for offshore fabrication, Metal Construction, 15-8 (1983), 438-443
  5. T. Boniszewski and F. Watkinson : Effect of weld microstructures on hydrogen-induced cracking in transformation steels, Metal and Materials 7(2&3) (1973), 90-96&145-151
  6. T. Boniszewski : Hydrogen Embrittlement in Low Carbon Nickel and Manganese Steels, British Welding Journal, 12(7) (1965), 349-362
  7. T. Boniszewski, F. Watkinson, R. C. Baker and H. F. Tremlett : Hydrogen embrittlement and heataffected zone cracking in low carbon alloy steels with acicular microstructures, British Welding Journal, 12(7) (1965), 14-36
  8. H. J. Kim, B. Y. Kang : Developing of Welding Consumable for Controlling the Cold Cracking in Steel Deposited Metal, Journal of KWS, 20-3 (2002), 259-264 (in Korean)
  9. H. J. Kim, B. Y. Kang : Effect of Microstructure on Cold Cracking in Weld Metal, Journal of KWS, 21-1 (2003), 8-13 (in Korean)
  10. H. J. Kim, B. Y. Kang : Evaluation Methods for Cold Crack Susceptibility of Deposited Metal, Journal of KWS, 20-4 (2002), 429-436 (in Korean)
  11. K. H. Kim, H. J. Kim and H. S. Ryoo : Verification of Quantitative Evaluation Method for Ferritic Weld Metal Microstructure, Journal of KWS, 23-4 (2005), 27-33 (in Korean)
  12. H. W. Lee, S. W. Kang and M. H. Kim : Effect of Hydrogen Depends on Transverse Cracks in Thick Steel Weldments, Journal of KWS, 26-3 (2008), 225-229 (in Korean)
  13. H. W. Lee, S. W. Kang and J. M. Lee : Effect of Susceptible Microstructure Depends on Transverse Cracks in Thick Steel Weldments, Journal of KWJS, 26-3 (2008), 219-224 (in Korean)
  14. S. Liu and J. E. Indacochea : Welding Theory and Practice, Part 3 (1990)
  15. J. M. Dowling, J. M. Corbett and H. W. Kerr : Inclusion phases and the nucleation of acicular ferrite in submerged arc welds in high strength low alloy steels, Metallurgical Transactions A, 17 (1986), 1611-1623 https://doi.org/10.1007/BF02650098
  16. R. A. Farrar, Z. Zhang, S. R. Bannister and G. S. Barritte : The effect of prior austenite grain size on the transformation behaviour of C-Mn-Ni weld metal, Journal of Materials Science, 28 (1993), 1385-1390 https://doi.org/10.1007/BF01191982
  17. B. J. Kim, S. H. Uhm, C. H. Lee : Effects of inclusions and microstructures on impact energy of high-input Submerged-Arc-Weld metals, Journal of Engineering Materials and Technology, 127 (2005), 204-213 https://doi.org/10.1115/1.1857933
  18. S. S. Babu and S. A. David : Inclusion formation and microstructure evolution in low alloy steel welds, ISIJ Int, 42-12 (2002), 1344-1353 https://doi.org/10.2355/isijinternational.42.1344
  19. S. S. Babu : Acicular ferrite and bainite in Fe-Cr-C weld deposits, Ph. D. Thesis, University of Cambrige (1991)
  20. P. H. M. Hart : Resistance to hydrogen cracking in steel weld metal, Welding Journal, 65-1 (1986), 14-22
  21. A. P. Chakravarti, S. R. Balb : Evaluation of weld metal cold cracking using the G-BOP test, Welding Journal, 68-1 (1989), 1s
  22. H. W. Lee : Weld metal hydrogen-assisted cracking in thick steel plate weldments, Mat. Sci. and Eng. A, 445-446 (2007), 328-335 https://doi.org/10.1016/j.msea.2006.09.046
  23. M. J. Robins, P. J. Kilgallon : A Review of the effect of microstructure on hydrogen embrittlement of high strength offshore steels, Offshore Shore Technology Report-OTO 1999 065, Dec, 1999, Cranfield University, UK
  24. F. Watkinson : Hydrogen cracking in high strength weld metal, Welding Journal, 58-9 (1969), 417-424
  25. R. J. Parageter : Effect of arc energy, plate thickness and preheat on C-Mn steel weld metal hydrogen cracking, TWI Report 1992 (1992), 461
  26. J. S. Seo, H. J. Kim, and H. S. Ryoo : Effect of Grain Boundary Ferrite on Susceptibility to Cold Cracking in High-strength Weld Metal, METALS AND MATERIALS International, 14-4 (2008), 515-522 https://doi.org/10.3365/met.mat.2008.08.515
  27. C. L. Choi, D. C. Hill : A Study of Microstructural Progression in As- Deposited Weld Metal, Welding Journal, 5Z (1978), 232s
  28. J. L. Lee and Y. P. Pan : Metall. Trans. A, 21 (1990), 1527 https://doi.org/10.1007/BF02672567
  29. J. R. Garland and P. R. Kirkwood : Toward improved submerged arc weld metals, Metal Construction part 1, 7-5 (1975), s275
  30. J. R. Garland and P. R. Kirkwood : Toward improved submerged arc weld metals, Metal Construction part 2, 7-6 (1975), s320
  31. S. H. Kim, C. Y. Bang, K. S. Bang : Journal of Materials Science, 36 (2001), 1197 https://doi.org/10.1023/A:1004890027527
  32. H. J. Yi, Y. J. Lee, J. Y. Kim and S. S. Kang : Effect of microstructure and chemical composition on cold crack susceptibility of high-strength weld metal, Journal of Mech. Sci. and Tech. 25-9 (2011), 2185-2193 https://doi.org/10.1007/s12206-011-0529-2
  33. J. H. Tweed and J. F. Knott : Metal Science, 17-2 (1983), 45
  34. J. S. Seo, J. H. Kim, H. J. Kim and H. S. Ryoo : Characteristics of Cold Cracks in FCA Weld Metal, Journal of KWJS, 25-4 (2007), 342-346 (in Korean)