DOI QR코드

DOI QR Code

Genetic Diversity and Differentiation of Colletotrichum spp. Isolates Associated with Leguminosae Using Multigene Loci, RAPD and ISSR

  • Mahmodi, Farshid (Department of Plant Protection, Faculty of Agriculture, University Putra Malaysia) ;
  • Kadir, J.B. (Department of Plant Protection, Faculty of Agriculture, University Putra Malaysia) ;
  • Puteh, A. (Department of Crop Science, Faculty of Agriculture, University Putra Malaysia) ;
  • Pourdad, S.S. (Dry-land Agricultural Research Institute (DARI)) ;
  • Nasehi, A. (Department of Plant Protection, Faculty of Agriculture, University Putra Malaysia) ;
  • Soleimani, N. (Department of Plant Protection, Faculty of Agriculture, University Putra Malaysia)
  • Received : 2013.06.08
  • Accepted : 2013.12.01
  • Published : 2014.03.01

Abstract

Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3) verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4%) and (15.5-19.9), respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers.

Keywords

References

  1. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. and Wheeler, D. L. 2008. GenBank. Nucleic Acids Res. 36: D25-D30. https://doi.org/10.1093/nar/gkn320
  2. Cai, L., Hyde, K. D., Taylor, P. W. J., Weir, B., Waller, J., Abang, M. M., Zhang, J. Z., Yang, Y. L., Phoulivong, S., Liu, Z. Y., Prihastuti, H., Shivas, R. G., McKenzie, E. H. C. and Johnston, P. R. 2009. A polyphasic approach for studying Colletotrichum. Fungal Divers. 39:183-204.
  3. Cannon, P. F., Damm, U., Johnston, P. R. and Weir, B. S. 2012. Colletotrichum-current status and future directions. Stud. Mycol. 73:181-213. https://doi.org/10.3114/sim0014
  4. Casimiro, S., Moura, M., Ze-Ze, L., Tenreiro, R. and Monteiro, A. A. 2004. Internal transcribed spacer 2 amplicons as a molecular marker for identification of Peronospora parasitica (crucifer downy mildew). J. Appl. Microbiol. 96: 579-587. https://doi.org/10.1111/j.1365-2672.2004.02193.x
  5. Ciampi, M. B., Meyer, M. C., Costa, M. J. N., Zala, M., McDonald, B. A. and Ceresini, P. C. 2008. Genetic structure of populations of Rhizoctonia solani anastomosis group-1 IA from soybean in Brazil. Phytopathology 98:932-941. https://doi.org/10.1094/PHYTO-98-8-0932
  6. Crouch, J. A., Clarke, B. B., White, J. F. and Hillman, B. I. 2009. Systematic analysis of the falcate-spored graminicolous Colletotrichum and a description of six new species of the fungus from warm season grasses. Mycologia 101:717-732. https://doi.org/10.3852/08-230
  7. Damm, U., Woudenberg, J. H. C., Cannon, P. F. and Crous, P. W. 2009. Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers. 39:45-87.
  8. Graham, P.H. and Vance, C.P. 2003. Legumes; Importance and Constraints to greater use. Plant Physiol. 131:872-877. https://doi.org/10.1104/pp.017004
  9. Gupta, S., Srivastava, M., Mishra, G., Naik, P., Chauhan, R., Tiwari, S., Kumar, M. and Singh, R. 2010. Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afric. J. Biotechnol. 7:4230-4243.
  10. Guthrie, P. A. I., Magill, C. W., Frederiksen, R. A. and Odvody, G. N. 1992. Random amplified polymorphic DNA markers: A system for identifying and differentiating isolates of Colletotrichum. Phytopathology 82:832-835. https://doi.org/10.1094/Phyto-82-832
  11. Hall, T. A. 1999. BioEdit; a user-friendly biological sequence alignment editor and analysis program for windows 95/98/ NT. Nucleic Acids Symposium Series 41:95-98.
  12. Hettwer, U. and Gerowitt, B. 2004. An investigation of genetic variation in Cirsium arvense field patches. Weed Res. 44: 289-297. https://doi.org/10.1111/j.1365-3180.2004.00402.x
  13. Hyde, K. D., Cai, L., Cannon, P. F., Crouch, J. A., Crous, P. W., Damm, U., Goodwin, P. H., Chen, H., Johnston, P. R., Jones, EBG., Liu, Z. Y., McKenzie, E. H. C., Moriwaki, J., Noireung, P., Pennycook, S. R., Pfenning, L. H., Prihastuti, H., Sato, T., Shivas, R. G., Tan, Y. P., Taylor, P. W. J., Weir, B. S., Yang, Y. L. and Zhang, J. Z. 2009a. Colletotrichum - names in current use. Fungal Divers. 39:147-183.
  14. Hyde, K, D., Cai, L., McKenzie, E. H. C., Yang, Y. L. and Zhang, J. Z. 2009b. Colletotrichum: a catalogue of confusion. Fungal Divers. 39:1-17.
  15. Hyde, K. D. and Zhang, Y. 2008. Epitypification: should we epitypify? Journal of Zhejiang University, Science B 9:842-846. https://doi.org/10.1631/jzus.B0860004
  16. Jones, C. J., Edwards, K. J. S., Castaglione, S., Winfield, M. O. and Sala, F. et al. 1997. Reproducibility testing of RAPD, AFLP, and SSR markers in plants by a network of European laboratories. Molecular Breeding 3:381-390. https://doi.org/10.1023/A:1009612517139
  17. Kistler, H. C. and Miao, V. P. W. 1992. New modes of genetic change in filamentous fungi. Annu. Rev. Phytopathol. 30:131-152. https://doi.org/10.1146/annurev.py.30.090192.001023
  18. Kumar, N., Jhang, T., Vir, S. and Sharma, T. R. 2010. Molecular and pathological characterization of Colletotrichum falcatum infecting subtropical Indian sugarcane. J. Phytopathol. 159:260-267.
  19. Levi, A., Rowland, L. J. and Hartung, J. S. 1993. Production of reliable randomly amplified polymorphic DNA (RAPD) markers from DNA of woody plants. Hort. Sci. 28:1188-1190.
  20. Luikart, G., Allendorf, J. M., Cornuet, J. M. and Sherwin, W. B. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89:238-247. https://doi.org/10.1093/jhered/89.3.238
  21. Masel, A. M., He, C., Poplawski, A. M., Irwin, J. A. G. and Manners, J. M. 1996. Molecular evidence for chromosome transfer between biotypes of Colletotrichum gloeosporioides. Mol. Plant Microbe Interact. 5:339-348.
  22. McDonald, B. A. 1997. The population genetics of fungi: Tools and Techniques. Physiopathology 87:448-453.
  23. McDonald, B. A. and Linda, C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349-379. https://doi.org/10.1146/annurev.phyto.40.120501.101443
  24. Milgroom, M. G. 1996. Recombination and the multilocus structure of fungal populations. Annu. Rev. Phytopathol. 34:457-477. https://doi.org/10.1146/annurev.phyto.34.1.457
  25. Mort, M. E., Crawford, D. J., Santos-Guerra, A., Francisco-Ortega, J., Esselman, E. J. and Wolfe, A. D. 2003. Relationships among the Macaronesian members of Tolpis (Asteraceae: Lactuceae) based upon analyses of inter-simple sequence repeat (ISSR) markers. Taxon 52:511-518. https://doi.org/10.2307/3647449
  26. Mordue, J. E. M. 1971. Glomerella cingulata. CMI Description of Pathogenic Fungi and Bacteria, No. 315. Commonwealth Mycol. Inst., Kew, UK.
  27. Mullis, K., Faloona, F. A., Scharf, S., Saiki, R., Horn, G. and Erlich, H. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symposium on Quantitative Biology LI:263-273.
  28. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13:1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  29. Penner, G. A., Bush, A., Wise, R., Kim, W., Domier, L., Kasha, K., Laroch, A., Scoles, G. S. and Gedak, G. 1993. Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Meth. Appl. 2:341-345. https://doi.org/10.1101/gr.2.4.341
  30. Qian, W., Ge, S. and Hong, D. Y. 2001. Genetic variation within and among populations of a wild rice Oryza granulate from China detected by RAPD and ISSR. Theor. Appl. Genet. 102:440-449. https://doi.org/10.1007/s001220051665
  31. Ratanacherdchai, K., Wang, H. K., Lin, F. C. and Soytong, K. 2007. RAPD analysis of Colletotrichum species causing chilli anthracnose disease in Thailand. J. Agr. Technol. 3:211-219.
  32. Ratanacherdchai, K., Wang, H. K., Lin, F. C. and Soytong, K. 2010. ISSR for comparison of cross-inoculation potential of Colletotrichum capsici causing chilli anthracnose. Afri. J. Microbiol. Res. 4:76-83.
  33. Rohlf, E. J. 1993. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 1.80. Applied Biostatistics Inc., Setauket, New York.
  34. Sachse, K. 2004. Specificity and performance of PCR detection assays for microbial pathogens. Mol. Biotechnol. 26:61-79. https://doi.org/10.1385/MB:26:1:61
  35. Sambrook, J., Fritsch, E. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd edn. New York: Cold Spring Harbor Press.
  36. Serraj, R. 2004. Symbiotic nitrogen fixation: challenges and future prospects for application in tropical agrosystems. Oxford and IBH, New Delhi, India.
  37. Sherriff, C., Whelan, M. J., Arnold, G. M., Lafay, J. F., Brygoo, Y. and Bailey, J. A. 1994. Ribosomal DNA sequence analysis reveals new species groupings in the genus Colletotrichum. Exp. Mycol. 18:121-138. https://doi.org/10.1006/emyc.1994.1014
  38. Sherriff, C., Whelan, M. J., Arnold, G. M. and Baily, J. A. 1995. rDNA sequence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycolog. Res. 99:475-478. https://doi.org/10.1016/S0953-7562(09)80649-7
  39. Sutton, B. C. 1980. The Coelomycetes; fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, London. 523-527.
  40. Sutton, B. C. 1992. The Genus Glomerella and its anamorph Colletotrichum, In: Bailey, J. A. and Jeger, M. J. (eds) Colletotrichum: Biology, Pathology, and Control. CAB International, Wallingford, PP. 1-26.
  41. Talbot, N. J. 2001. Nucleic acid isolation and analysis, In: Talbot, N. J. (ed) Molecular and Cellular Biology of Filamentous Fungi, Oxford: Oxford University Press, PP. 23-26.
  42. Tamura, K., Peterson, D., Peterson, N., Steker, G., Nei, M. and Kumar, S. 2011. MEGA5; Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  43. Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. and Fisher, M. C. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31:21-32. https://doi.org/10.1006/fgbi.2000.1228
  44. Than, P. P., Jeewon, R., Hyde, K. D., Pongsupasamit, S., Mongkolporn, O., Taylor, P. W. J. (2008). Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol. 57:562-572. https://doi.org/10.1111/j.1365-3059.2007.01782.x
  45. Thompson, J. D., Higgins, D. G., Gibson, T. J. 1994. Clustal W; Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  46. Williams, J. G. K., kubelik, A. R., Livvak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535. https://doi.org/10.1093/nar/18.22.6531
  47. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J. (eds) PCR Protocols: a guide to methods and applications, Academic Press, New York, USA, PP. 315-322.
  48. Wolfe, A. D. and Liston, A. 1998. Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Plant Molecular Systematics II eds. Soltis, D. E., Soltis, P. S. and Doyle, J. J. pp. 43-86. Kluwer.
  49. Zietkiewicz, E., Rafalski, A. and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR) - anchored polymerase chain reaction amplification. Genomics 20:176-183. https://doi.org/10.1006/geno.1994.1151

Cited by

  1. Application of the consolidated species concept to identify the causal agent of strawberry anthracnose in Iran and initial molecular dating of the Colletotrichum acutatum species complex vol.147, pp.2, 2017, https://doi.org/10.1007/s10658-016-1009-4
  2. First Report of Anthracnose and Stem End Rot Diseases Caused by Colletotrichum gloeosporioides and Neofusicoccum australe on Avocado Fruits in Turkey vol.100, pp.8, 2016, https://doi.org/10.1094/PDIS-03-16-0279-PDN
  3. PROCESO DE INFECCIÓN DE ANTRACNOSIS POR Colletotrichum truncatum EN PAPAYA MARADOL vol.39, pp.spe, 2017, https://doi.org/10.1590/0100-29452017379
  4. First Report of Lasiodiplodia pseudotheobromae Causing Postharvest Fruit Rot of Lemon in Turkey vol.100, pp.11, 2016, https://doi.org/10.1094/PDIS-04-16-0512-PDN
  5. Morphological and molecular diversity of endophytic Colletotrichum gloeosporioides from tea plant, Camellia sinensis (L.) O. Kuntze of Assam, India vol.14, pp.1, 2016, https://doi.org/10.1016/j.jgeb.2015.12.003
  6. Colletotrichum truncatum, a new cause of anthracnose on Chinese flowering cabbage (Brassica parachinensis) in China vol.41, pp.3, 2016, https://doi.org/10.1007/s40858-016-0086-4
  7. Development of Microsatellite Markers and Analysis of Genetic Diversity and Population Structure of Colletotrichum gloeosporioides from Ethiopia vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0151257
  8. Comparative Methods for Molecular Determination of Host-Specificity Factors in Plant-Pathogenic Fungi vol.19, pp.3, 2018, https://doi.org/10.3390/ijms19030863
  9. The Landscape of Repetitive Elements in the Refined Genome of Chilli Anthracnose Fungus Colletotrichum truncatum vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02367
  10. in China pp.0191-2917, 2018, https://doi.org/10.1094/PDIS-08-18-1431-PDN
  11. Determination and quantification of asiaticoside in endophytic fungus from Centella asiatica (L.) Urban vol.34, pp.8, 2018, https://doi.org/10.1007/s11274-018-2493-9