DOI QR코드

DOI QR Code

Thermal Properties and Alkaline Weight Reduction of Anionic Copolyesters/Dodecylbenzenesulfonate Blend Films

음이온성 공중합 폴리에스터/Dodecylbenzenesulfonate 블렌드 필름의 열적 특성 및 알칼리 감량

  • Jee, Min Ho (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Jong Hwan (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Hong, Choong Hee (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Eom, Dae Gil (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Kim, Sun Hong (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Choi, Jin Uk (KOLON FM Research Center) ;
  • Baik, Doo Hyun (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • 지민호 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 이종환 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 홍충희 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 엄대길 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 김선홍 (충남대학교 유기소재.섬유시스템 공학과) ;
  • 최진욱 (코오롱 FM 연구소) ;
  • 백두현 (충남대학교 유기소재.섬유시스템 공학과)
  • Received : 2013.12.22
  • Accepted : 2014.02.04
  • Published : 2014.02.28

Abstract

A series of anionic copolyester/dodecylbenzenesulfonate (DBS) blend films were prepared by a melt-compounding method and then annealed under a range of conditions. To eliminate possible experimental errors in measuring the alkaline reduction rate of the samples, the crystallinity should be uniform. We used Fourier transform infrared (FT-IR) spectroscopy to measure and control the relative crystallinity of the annealed samples. The relationship between the crystallinity and reduction rate, as well as the annealing conditions of the annealed blend samples, was derived. FT-IR analysis showed that the crystallization rate of copolyester/DBS blend films is lower than that of pure copolyester. However, the alkaline weight reduction rate of the blend films, which have similar crystallinities, increases dramatically with increasing DBS content, even at a low DBS content of 1 to 3 wt%, although the effect of the DBS becomes negligible above 5 wt%. However, unlike the result for annealed films, the alkaline weight reduction rate for amorphous films exhibited a linear relationship between the alkaline reduction rate and the DBS content for all of the examined DBS content, demonstrating that the effects of the DBS on the alkaline weight reduction of the copolysester could be affected by processing conditions such as post-drawing and annealing.

Keywords

References

  1. 도성준, 백두현, "나노필라멘트 제조 기술", 섬유기술과 산업, 2010, 14, 47−54.
  2. K. J. Hsiao, J. L. Kuo, J. W. Tang, and L. T. Chen, "Physics and Kinetics of Alkaline Hydrolysis of Cationic Dyeable Poly(ethylene terephthalate) (CDPET) and Polyethylene Glycol (PEG)-Modified CDPET Polymers: Effects of Dimethyl 5-Sulfoisophthalate Sodium Salt/PEG Content and the Number-Average Molecular Weight of the PEG", Polym Sci, 2005, 98, 550−556.
  3. Z. Y. Oian, S. Li, Y. He, and X. B. Liu, "Synthesis and in vitro Degradation Study of Poly(ethylene terephthalate)/ poly(ethylene glycol) (PET/PEG) Multiblock Copolymer", Polym Degrad Stab, 2004, 83, 93−100. https://doi.org/10.1016/S0141-3910(03)00229-5
  4. O. Gaona, D. P. R. Kint, A. M. de Ilarduya, A. Alla, J. Bou, and S. Munoz-Guerra, "Preparation and Hydrolytic Degradation of Sulfonated Poly(ethylene terephthalate) Copolymers", Polymer, 2003, 44, 7281−7289. https://doi.org/10.1016/j.polymer.2003.09.044
  5. Y. J. Kim, M. H. Jee, E. H. Lee, J. U. Choi, D. H. Noh, H. K. Rho, and D. H. Baik, "Effects on Molecular Weight of Poly(ethylene glycol) on the Thermal Properties and the Alkaline Hydrolysis of Copolyesters", Text Sci Eng, 2012, 49(1), 1−8. https://doi.org/10.12772/TSE.2012.49.1.001
  6. 김홍조, 이해운, 문승호, "추출성 폴리에스테르의 제조방법", 대한민국 특허청, 10-0105271-0000(1996).
  7. H. I. Kim, C. H. Jeong, and M. H. Min, "Accelerating Effects of Organic Acid Treatment on Weight Reduction Characteristics of Sea-Island Type PET Supermicrofiber (1)", Text Color Finsh, 2012, 24(1), 45−53. https://doi.org/10.5764/TCF.2012.24.1.45
  8. E. S. Shin, H. S. Kim, and J. J. Lee, "Weight Reduction Behavior and Dyeing Properties of Sea-island PET Ultramicrofiber Knitted Fabrics", Text Sci Eng, 2012, 49(1), 18−25. https://doi.org/10.12772/TSE.2012.49.1.018
  9. S. J. Choi, N. K. Ye, M. H. Min, and H. S. Kim, "Optical Properties of Nanofilament Fabrics", Text Sci Eng, 2013, 50(2), 96−101. https://doi.org/10.12772/TSE.2013.50.096
  10. Y. Li and C. W. Joo, "Structural Factors and Physical Properties of Needle-punched Nonwovens Based on Co- PET/PA Bicomponent Fibers via Alkali Treatment", Fiber Polym, 2012, 13(4), 456−465. https://doi.org/10.1007/s12221-012-0456-6
  11. W. Zhang and D. Shen, "The Effects of Thermal Histories on Crystallization of Poly(ethylene terephthalate)", Polym J, 1998, 30(4), 311−314. https://doi.org/10.1295/polymj.30.311
  12. Z. Chen, J. N. Hay, and M. J. Jenkins, "The Thermal Analysis of Poly(ethylene terephthalate) by FTIR Spectroscopy", Thermochimica Acta, 2013, 552, 123−130. https://doi.org/10.1016/j.tca.2012.11.002
  13. M. Bertoldo, M. Labardi, C. Rotella, and S. Capaccioli, "Enhanced Crystallization Kinetics in Poly(ethylene terephthalate) Thin Films Evidenced by Infrared Spectroscopy", Polymer, 2010, 51, 3660−3668. https://doi.org/10.1016/j.polymer.2010.05.040
  14. J. S. Jang, J. H. Oh, and S. I. Moon, "Crystallization Behavior of Poly(ethylene terephthalate) Blends with Hyperbranched Polymers: The Effect of Terminal Groups and Composition of Hyperbranched Polymers", Macromolecules, 2000, 33, 1864−1870. https://doi.org/10.1021/ma991592c
  15. Y. Zhang, Y. Lu, Y. Duan, J. Zhang, S. Yan, and D. Shen, "Reflection-Absorption Infrared Spectroscopy Investigation of the Crystallization Kinetics of Poly(ethylene terephthalate) Ultrathin Films", J Polym Sci: Part B: Polym Phys, 2004, 42, 4440−4447. https://doi.org/10.1002/polb.20306
  16. Y. Zhang, J. Zhang, Y. Lu, Y. Duan, S. Yan, and D. Shen, "Glass Transition Temperature Determination of Poly(ethylene terephthalate) Thin Films Using Reflection-Absorption FTIR", Macromolecules, 2004, 37, 2532−2537. https://doi.org/10.1021/ma035709f
  17. J. R. Atkinson, F. Biddlestone, and J. N. Hay, "An Investigation of Glass Formation and Physical Ageing in Poly(ethylene terephthalate) by FT-IR Spectroscopy", Polymer, 2000, 41, 6965−6968. https://doi.org/10.1016/S0032-3861(00)00017-3