DOI QR코드

DOI QR Code

Synthesis of polymer - based inverted opal and transformation of its optical properties

  • Masalov, Vladimir M. (Institute of Solid State Physics RAS) ;
  • Dolganov, Pavel V. (Institute of Solid State Physics RAS) ;
  • Sukhinina, Nadezhda S. (Institute of Solid State Physics RAS) ;
  • Dolganov, Vladimir K. (Institute of Solid State Physics RAS) ;
  • Emelchenko, Gennadi A. (Institute of Solid State Physics RAS)
  • Received : 2013.08.05
  • Accepted : 2014.02.18
  • Published : 2014.03.25

Abstract

We have obtained opal-like photonic crystals based on opals and inverted opals exhibiting a shift of the selective reflection band toward longer and shorter wavelengths with respect to the diffraction band of the initial opal consisting of $SiO_2$ spheres. The contribution of frames forming three-dimensional periodic structures and that of fillers to the spectral arrangement of the diffraction bands has been determined.

Keywords

Acknowledgement

Supported by : Russian Foundation

References

  1. Aloshyna, M., Sivakumar, S., Venkataramanan, M., Brolo, A.G. and van Veggel, F.C.J.M. (2007), "Significant suppression of spontaneous emission in $SiO_{2}$ photonic crystals made with Tb3+-doped LaF3 nanoparticles", J. Phys. Chem., 111, 4047.
  2. Bardyshev, I.I., Mokrushin, A.D., Pribylov, A.A., Samarov, E.N., Masalov, V.M., Karpov, I.A. and Emelchenko, G.A. (2006), "Porous structure of synthetic opals", Colloid J., 68(1), 20-25. https://doi.org/10.1134/S1061933X06010029
  3. Biswas, R., Chan, C.T., Sigalas, M., Soukoulis, C.M. and Ho, K.M. (1996), Photonic band gap materials, Ed. C.M. Soukoulis, Dordrecht, Kluwer.
  4. Bogomolov, V.N. (1978), "Liquids in ultrathin cannals, (Thread-like and cluster crystals)", Uspechi Physical Sciences, 124, 171. (in Russian)
  5. Bogomolov, V.N., Gaponenko, S.V., Germanenko, I.N., Kapitonov, A.M., Petrov, E.P., Gaponenko, N.V., Prokofiev, A.V., Ponyavina, A.N., Silvanovich, N.I. and Samoilovich, S.M. (1997), "Photonic band gap phenomenon and optical properties of artificial opals", Phys. Rev. E, 55, 7619. https://doi.org/10.1103/PhysRevE.55.7619
  6. Bogomolov, V.N., Kurdyukov, D.A., Prokofiev, A.V. and Samoilovich, S.M. (1996), "Effect of a photonic band gap in the optical range on solid-state $SiO_{2}$ cluster lattices - opals", Pisma Zh. Eksp. Teor. Fiz., 63(7), 520-525.
  7. Bohn, J.J., Ben-Moshe, M., Tikhonov, A., Qu, D., Lamont, D.N. and Asher, S.A. (2010), "Charge stabilized crystalline colloidal arrays as templates for fabrication of non-close-packed inverted photonic crystals", J. Colloid Interf. Sci., 344, 298-307. https://doi.org/10.1016/j.jcis.2010.01.021
  8. Chabanov, A.A., Jun, Y. and Norris, D.J. (2004), "Avoiding cracks in self-assembled photonic band-gap crystals", Appl. Phys. Lett., 84, 3573. https://doi.org/10.1063/1.1737066
  9. Darragh, P.J., Gaskin, A.J., Terrell, B.C. and Sanders, J.V. (1966), "Origin of precious opal", Nature, 209, 13. https://doi.org/10.1038/209013a0
  10. Denkov, N.D., Velev, D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, J.H. and Nagayama, K.T. (1992), "Mechanism of formation of two-dimensional crystals from latex particles on substrates", Langmuir, 8, 3183. https://doi.org/10.1021/la00048a054
  11. Gajiev, G.M., Golubev, V.G., Kurdyukov, D.A., Medvedev, A.V., Pevtsov, A.B., Sel'kin, A.V. and Travnikov, V.V. (2005), "Bragg reflection spectroscopy of opal-like photonic crystals", Phys. Rev. B, 72, 205115. https://doi.org/10.1103/PhysRevB.72.205115
  12. Golubev, V.G., Kosobukin, V.A., Kurdyukov, D.A., Medvedev, A.V. and Pevtsov, A.B. (2001), "Physics and technique of semiconductors", 35, 710. (in Russian)
  13. Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L. (1999), "Single-crystal colloidal multilayers of controlled thickness", Chem. Mater., 11, 2132. https://doi.org/10.1021/cm990080+
  14. Jones, J.B. and Segnit, E.R. (1969), "Water in sphere-type opal ", Mineral. Mag., 37, 357. https://doi.org/10.1180/minmag.1969.037.287.07
  15. Karpov, I.A., Samarov, E.N., Masalov, V.M., Bozhko, S.I. and Emel'chenko, G.A. (2005), "The intrinsic structure of spherical particles of opal", Phys. Solid State, 47(2), 347-351. https://doi.org/10.1134/1.1866417
  16. Kim, S., Mitropoulos, A.N., Spitzberg, J.D., Tao, H., Kaplan, D.L. and Omenetto, F.G. (2012), "Silk inverse opals", Nature Photonics, 6, 818. https://doi.org/10.1038/nphoton.2012.264
  17. Krauss, T.F. (1998), "Photonic crystals and microstructures", IEE Proc. Optoelectron, 145, 372. https://doi.org/10.1049/ip-opt:19982463
  18. Masalov, V.M., Aldushin, K.A., Dolganov, P.V. and Emel'chenko, G.A. (2001), "$SiO_{2}$ - Microspheres Ordering in 2D Structures", Phys. Low-Dim. Struct., 5/6, 45.
  19. Masalov, V.M., Sukhinina, N.S. and Emel'chenko, G.A. (2011), "Colloidal particles of silicon dioxide for the formation of opal-like structures", Phys. Solid State., 539(6), 1135-1139.
  20. Masalov, V.M., Sukhinina, N.S., Kudrenko, E.A. and Emelchenko, G.A. (2011), "Mechanism of formation and nanostructure of Stober silica particles", Nanotechnology, 22, 275.
  21. Menshikova, A.Y., Shevchenko, N.N., Bugakov, I.V., Yakimansky, A.V. and Sel'kin, A.V. (2011), "Direct opal-like structures consisting of monodisperse polymer particles and synthesis of the related inverse structures", Phys. Solid State., 53, 1155-1160. https://doi.org/10.1134/S1063783411060230
  22. Meseguer, F., Blanco, A., Miguez, H., Garcia-Santamaria, F., Ibisate, M. and Lopez, C., (2002), "Synthesis of inverse opals", Colloid. Surface. A, 202, 281-290. https://doi.org/10.1016/S0927-7757(01)01084-6
  23. Miguez, H., Meseguer, F., Lopez, C., Lopez-Tejeira, F. and Sanchez-Deheza, J. (2001), "Synthesis and photonic bandgap characterization of polymer inverse opals", Adv. Mater., 13, 393. https://doi.org/10.1002/1521-4095(200103)13:6<393::AID-ADMA393>3.0.CO;2-4
  24. Prevo, B.G. and Velev, O.D. (2004), "Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions", Langmuir, 20, 2099. https://doi.org/10.1021/la035295j
  25. Ralchenko, V.G., Sovyk, D.N., Bolshakov, A.P., Homich, A.A, Vlasov, I.I., Kurdyukov, D.A., Golubev, V.G. and Zakhidov, A.A. (2011), "Diamond direct and inverse opal matrices produced by chemical vapor deposition", Phys. Solid. State, 53(6), 1131-1134. https://doi.org/10.1134/S106378341106028X
  26. Samarov, E.N., Mokrushin, A.D., Masalov, V.M., Abrosimova, G.E. and Emel'chenko, G.A. (2006), "Structural modification of synthetic opals during thermal treatment", Phys. Solid. State, 48(7), 1280-1283. https://doi.org/10.1134/S1063783406070109
  27. Sander, J.V. (1964), "Colour of precious opal", Nature, 204, 1151-1153. https://doi.org/10.1038/2041151a0
  28. Scharrer, M., Wu, X., Yamilov, A., Cao, H. and Chang, R.P.H. (2005), "Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition", Appl. Phys. Lett., 86, 151113. https://doi.org/10.1063/1.1900957
  29. Stober, W., Fink, A. and Bohn, E. (1968), "Controlled growth of monodisperse silica spheres in the micron size range ", J. Colloidal Interface Sci., 26, 62. https://doi.org/10.1016/0021-9797(68)90272-5

Cited by

  1. Nanoporous SiO2 based on annealed artificial opals as a favorable material platform of terahertz optics vol.10, pp.9, 2014, https://doi.org/10.1364/ome.402185