DOI QR코드

DOI QR Code

Studies on the Morphology of Smoke Particles for Each Type of Fire by Using Steady State Tube Furnace

등속공급 튜브연소로를 이용한 각 연소조건에서의 연기입자 형상 분석

  • Goo, Jaehark (Dept. of Fire Protection and Safety, Woosuk Univ.)
  • 구재학 (우석대학교 소방안전학과)
  • Received : 2013.12.31
  • Accepted : 2014.02.14
  • Published : 2014.02.28

Abstract

Smoke from fire is a mixture of combustion gases and particles which include micro-droplets formed from condensed organic vapors and carbonaceous agglomerates. The inhalation of smoke particles causes adverse health effects, and it is prerequisite for the hazard and risk analysis of the smoke particles to know how they behaviour in the respiratory tract. The characteristics of the absorption and adsorption of toxic gases and the amount and location of the particle deposition within the respiratory tract that determine the adverse health effects are related to the morphology and the size distribution of smoke particles. In the present work, as a preliminary study for the adverse health effects of smoke particles, the morphologies of the smoke particles from combustible materials were investigated for each fire stage: smouldering, well-ventilated flaming, small under-ventilated flaming, fully-developed under-ventilated fire. The steady-state tube furnace method given in ISO/TS 19700 was used for the generation of smoke particles. The fire stages were controlled by changing furnace temperature and equivalent ratio. The morphologies were analyzed by using Transmission Electron Microscope (Bio-TEM) by collecting the particles on TEM grids put on each stage of a cascade impactor.

화재현장에서 발생하는 연기는 일반적으로 연소가스와 더불어 여러 가지 성분의 유기증기 및 미연탄소로부터 생성된 미세입자로 되어 있다. 연기는 호흡기로 흡입되어 장단기 인체피해를 유발한다. 화재 시 발생하는 유독가스나 입자에 의한 피해를 예측하기 위해서는 연기입자의 호흡기관 내 이송과 침전, 그리고 입자를 매개로 한 유독가스의 흡수와 흡착등의 현상 파악이 필수적이며 이에 연기입자의 크기 및 형상은 이와 같은 현상의 변화에 중요한 변수로서 작용한다. 이 연구에서는 화재 시 발생하는 연기입자의 흡입에 의한 인체피해 특성을 예측하기 위하여 가연물 및 화재 조건에 따른 연기입자의 크기 및 형상에 대한 분석을 수행하였다. 국제표준에 따른 연소생성물 분석을 위하여 ISO/TS 19700 기준에 따라서 등속연소로를 제작하고 각 가연물에 대하여 연소로 온도 및 당량비 조건으로 정해지는 4가지 대표적인 화재조건, 즉, 저온불완전연소, 완전불꽃연소, 불완전불꽃연소, 고온불완전연소 조건에서 연기입자를 발생시켰다. 발생된 연기입자는 다단 충돌집진기를 이용하여 채집한 다음 투과전자현미경으로 크기 및 형상을 분석하였다.

Keywords

References

  1. R. G. Gann, J. D. Averill, K. M. Butler, W. W. Jones, G. W. Mulholland, J. L. Neviaser, T. J. Ohlemiller, R. D. Peacock, P. A. Reneke and J.R. Hall, Jr., "International Study on the Sublethal Effects of Fire Smoke on Survivability and Health: Phase I Final Report", NIST Technical Note 1439 (2001).
  2. K. M. Butler and G. W. Mulholland, "Generation and Transportation of Smoke Components", Fire Technology, Vol. 40, pp. 149-176 (2004). https://doi.org/10.1023/B:FIRE.0000016841.07530.64
  3. A. K. Bolling, J. Pagel, K. E. Yttri, L. Barregard, G. Sallsten, P. E. Schwarze and C. Boman, "Health Effects of Residential Wood Smoke Particles: The Importance of Combustion Conditions and Physicochemical Particle Properties", Particle and Fibre Toxicology, Vol. 6, pp. 29-48 (2009). https://doi.org/10.1186/1743-8977-6-29
  4. E. R. Weibel, "Morphometry of the Human Lung", Academic Press Inc., Springer-Verlag, New York (1963).
  5. W. C. Hinds, "Aerosol Technology", John Wiley & Sons, Inc., New York (1982).
  6. H. K. Chang and M. Paiva, "Respiratory Physiology: an Analytical Approach", Marcel Dekker, Inc., New York (1989).
  7. S. K. Friedlander, "Smoke, Dust and Haze: Fundamentals of Aerosol Behavior", Oxford Univ. Press, Oxford (2000).
  8. R. F. Phalen, "Inhalation Studies: Foundations and Techniques," Informa Healthcare, New York (2009).
  9. T. Hertzberg and P. Blomqvist, "Particles from Fires-a Screening of Common Materials Found in Buildings", Fire and Materials, Vol. 27, pp. 295-314 (2003). https://doi.org/10.1002/fam.837
  10. J. Goo, "Development of the Size Distribution of Smoke Particles in a Compartment Fire", Fire Safety Journal, Vol. 47, No. 1, pp. 46-53 (2012). https://doi.org/10.1016/j.firesaf.2011.09.007
  11. ISO/TS 19700, "Controlled Equivalence Ratio Method for the Determination of Hazardous Components of Fire Effluents" (2006).
  12. R. T. Hull and K. T. Paul, "Bench-scale Assessment of Combustion Toxicity-a Critical Analysis of Current Protocols", Fire Safety Journal, Vol. 42, pp. 340-365 (2007). https://doi.org/10.1016/j.firesaf.2006.12.006
  13. P. Blomqvist, T. Hertzberg, H. Tuovinen, K. Arrhenius and L. Rosell, "Detailed Determination of Smoke Gas Contents using a Small-scale Controlled Equivalence Ratio Tube Furnace Method", Fire and Materials, Vol. 31, pp. 495-521 (2007). https://doi.org/10.1002/fam.946
  14. R. B. Diemer Jr. and J. H. Olson, "Bivariate Moment Methods for Simultaneous Coagulation, Coalescence and Breakup", Journal of Aerosol Science, Vol. 37, pp. 363-385 (2006). https://doi.org/10.1016/j.jaerosci.2005.07.005
  15. M. Yu and J. Lin, "Taylor-expansion Moment Method for Agglomerate Coagulation due to Brownian Motion in the Entire Size Regime", Aerosol Science, Vol. 40, pp. 549-562 (2009). https://doi.org/10.1016/j.jaerosci.2009.03.001
  16. H. Yeh and G. M. Schum, "Models of Human Lung Airways and their Application to Inhaled Particle Deposition", Bulletin Math. Biology, Vol. 42, pp. 461-480 (1980). https://doi.org/10.1007/BF02460796