DOI QR코드

DOI QR Code

Application of Porous Carbon Catalyst Activating Reaction of Positive Electrode in Vanadium Redox Flow Battery

바나듐 레독스 흐름전지의 양극반응 활성화를 위한 다공성 탄소 촉매의 적용

  • Jeong, Sanghyun (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Chun, Seung-Kyu (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Lee, Jinwoo (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kwon, Yongchai (Graduate School of Energy and Environment, Seoul National University of Science and Technology)
  • 정상현 (서울과학기술대학교 에너지환경대학원) ;
  • 천승규 (서울과학기술대학교 에너지환경대학원) ;
  • 이진우 (포항공과대학교 화학공학과) ;
  • 권용재 (서울과학기술대학교 에너지환경대학원)
  • Received : 2014.07.31
  • Accepted : 2014.09.10
  • Published : 2014.09.30

Abstract

In this study, we implemented a research for improving performance of redox flow battery (RFB) via enhancing reaction rate of vanadium reaction ($[VO]^{2+}/[VO_2]^+$) that was a rate determining step. For doing that, porous catalyst, CMK3 was employed and its perfoamance was compared with that of Vulcan(XC-72) and commercial Pt/C (Johnson-Matthey Pt 20wt.%). Cyclic voltammetry (CV) was used for inspecting reactivity, while its structural feature was measured by TEM and BET&BJH. Also, Charge-discharge trend was evaluated by single cell tests. As result, CMK3 showed 6 times better catalytic activity and twice better reversibility than Vulcan(XC-72), while it showed larger surface area than Vulcan XR due to its porous structure. Furthermore, CMK3 indicated 85% of reactivity and reversibility of commercial Pt/C despite its Pt-less situation. In single cell tests, when RFB adopted CMK3 as catalyst for positive electrode, its charge-discharge curve result was better than that adopted commercial Pt/C.

본 연구는 바나듐 레독스 흐름전지에서 속도 결정단계인 양극 반응($[VO]^{2+}/[VO_2]^+$)을 개선하여 바나듐 반응의 속도를 증가시켜 흐름전지 성능을 향상시키고자 하는 목적으로 진행하엿다. 이를 위해, 다공성 촉매인 CMK3를 사용하여 일반적으로 사용되는 탄소 (Vulcan(XC-72)) 및 상용 Pt/C 촉매 (Johnson-Matthey사 Pt 20wt.%)와 그 성능을 비교하였다. 반응성은 순환주사전류법으로, 구조적 특성은 TEM과 BET&BJH을 이용하여 분석하였다. 또한, 완전지 실험을 통하여 전기화학적으로 나타난 결과가 어떻게 충방전에 적용되는지 확인하였다. 결과, CMK3는 Vulcan(XC-72)보다 6배 향상된 촉매 활성과 2배 이상 향상된 반응가역성이 나타남을 확인하였고, CMK3의 다공성 구조로 인해 Vulcan(XC-72) 보다 큰 표면적을 가지고 있음을 확인하였다. 아울러, CMK3는 백금 촉매가 없음에도, 상용 Pt/C 촉매의 85% 이상의 반응성과 가역성을 나타내었다. 완전지 실험에서 충방전 곡선은 CMK3를 적용한 흐름전지가 오히려 상용 Pt/C 촉매를 적용한 흐름전지보다 좋은 모습을 나타내었다.

Keywords

References

  1. G. Radford J. Cox, R. Wills, and E. Walsh, "Electrochemical characterisation of activated carbon particles used in redox flow battery electrode" J. Power Sources, 2008, 185, 1499-1504. https://doi.org/10.1016/j.jpowsour.2008.08.020
  2. P. Qian, H. Zhang, J. Chen, Y. Wen, Q. Luo, Z. Liu, D. You, and B. Yi, "A novel electrode-bipolar plate for vanadium redox flow battery applications" J. Power Sources, 2008, 175, 613-620. https://doi.org/10.1016/j.jpowsour.2007.09.006
  3. G. Oriji, Y. Katayama, and T. Miura, "Investigation on V(IV)/V(V) species in a vanadium redox flow battery" Electrochimica Acta,2004, 49, 3091-3095. https://doi.org/10.1016/j.electacta.2004.02.020
  4. K. Huang, X. Li, S. Liu, N. Tan, and L. Chen, "Research progress of vanadium redox flow battery for energy storage in China" Renewable Energy, 2008, 33, 186-192. https://doi.org/10.1016/j.renene.2007.05.025
  5. H. Vafiadis and M. Kazacos, "Evaluation of membrane for the novel vanadium bromineredox flow cell" J. Membrane Science, 2006, 279, 394-402. https://doi.org/10.1016/j.memsci.2005.12.028
  6. M. Chakrabati, R. Dryfe, and E. Roberts, "Evaluation of electrolyte for redox flow battery applications" Electrochimica Acta, 2007, 52, 2189-2195. https://doi.org/10.1016/j.electacta.2006.08.052
  7. 김형선, "Redox Flow Battery용 일체화된 흑연 /DSA 전극의 전기화학적 특성", Journal of the Korean Electrochemical Society, 2010, 13, 2, 123-127. https://doi.org/10.5229/JKES.2010.13.2.123
  8. 김용혁, "NaCl 전해질 농도 변화에 따른 다공질 탄소전극의 전기적 특성", 전기전자재료학회논문지, 2010, 23, 10, 814-819.
  9. Xianhong Rui, Moe Ohnmar Oo, Dao Hao Sim, Subash chandrabose Raghu, Qingyu Yan, Tuti Mariana Lim, Maria Skyllas-Kazacos, "Graphene oxide nanosheets/polymer binders as superior electrocatalytic materials for vanadium bromide redox flow batteries", Electrochimica Acta, 2012, 85, 175-181. https://doi.org/10.1016/j.electacta.2012.08.119
  10. Sanghyun Jeong, Sunhoe Kim, Yongchai Kwon, "Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process", Electrochimica Acta, 2013, 114, 439-447. https://doi.org/10.1016/j.electacta.2013.10.011
  11. Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, "Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries", Journal of Power Sources, 2010, 195, 4375-4379. https://doi.org/10.1016/j.jpowsour.2010.01.015
  12. S. Zhong, M. Skyllas-Kazacos, "Electrochemical behaviour of vanadium(V) /vanadium -(IV) redox couple at graphite electrodes", Journal ofPower Sources, 1992, 39, 1-9. https://doi.org/10.1016/0378-7753(92)85001-Q
  13. H.Q. Zhu, Y.M. Zhang, L. Yue, W.S. Li, G.L. Li, D. Shu, H.Y. Chen, "Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery", Journal of Power Sources, 2008, 184, 637-640. https://doi.org/10.1016/j.jpowsour.2008.04.016
  14. W.H. Wang, X.D. Wang, "Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery", Electrochimica Acta, 2007, 52, 6755-6762. https://doi.org/10.1016/j.electacta.2007.04.121