DOI QR코드

DOI QR Code

Solvent effect on the excited state of stilbene dendrimers bearing phenylacetylene groups

  • Nishimura, Yoshinobu (Faculty of Pure and Applied Sciences, University of Tsukuba) ;
  • Arai, Tatsuo (Faculty of Pure and Applied Sciences, University of Tsukuba)
  • Received : 2014.12.01
  • Accepted : 2014.12.13
  • Published : 2014.12.31

Abstract

We studied the characteristics of emissive state of the first (p-G1) and second (p-G2) generation of phenylacetylene dendrimers bearing stilbene as a core by using time-resolved fluorescence spectroscopy in cyclohexane (c-Hex) and N, N-dimethylformide (DMF), which are nonpolar and polar solvents, respectively. Time-dependent red-shift of emission spectra p-G2 both in c-Hex and DMF was observed in comparison with p-G1. Besides, the time constant of red-shift of spectra was found to be larger in DMF than in c-Hex. This indicates that the emissive state of p-G2 has a polar character in DMF as a result of charge delocalization from core to peripheral dendrons followed by stabilization of emissive state.

Keywords

References

  1. Grimsdale, A. C.; Müllen, K. Angew. Chem. Int. Ed. 2005, 44, 5592-5629. https://doi.org/10.1002/anie.200500805
  2. Chen, L.; Li, C.; Müllen, K. J. Mater. Chem. C 2014, 2, 1 938-1956. https://doi.org/10.1039/c3tc32315c
  3. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208-2267. https://doi.org/10.1021/cr100380z
  4. Lupton, J. M.; Samuel, I. D. W.; Beavington, R.; Burn, P. L.; Basler, H. Adv. Mater. 2001, 13, 258-261. https://doi.org/10.1002/1521-4095(200102)13:4<258::AID-ADMA258>3.0.CO;2-9
  5. Qu, J.; Pschirer, N. G.; Liu, D.; Stefan, A.; De Schryver, F. C.; Mulen, K. Chem. Eur. J. 2004, 10, 528-537. https://doi.org/10.1002/chem.200304994
  6. Lupton, J. M.; Samuel, I. D. W.; Burn, P. L.; Mukamel, S. J. Phys. Chem. B 2002, 106, 7647-7653.
  7. Ranasinghe, M. I.; Murphy, P.; Lu, Z.; Huang, S. D.; Twie g, R. J.; Goodson III, T. Chem. Phys. Lett. 2004, 383, 411-417. https://doi.org/10.1016/j.cplett.2003.11.051
  8. Speiser, S. Chem. Rev. 1996, 96, 1953-1976. https://doi.org/10.1021/cr941193+
  9. Scholes, G. D.; Ghiggino, K. P.; Oliver, A. M.; Paddon-Ro w, M. N. J. Phys. Chem. B 1993, 97, 11871-11876. https://doi.org/10.1021/j100148a006
  10. Scholes, G. D.; Andrews, D. L. J. Chem. Phys. 1996, 107, 5374-5384.
  11. Amatatsu, Y.; Hosokawa, M. J. Phys. Chem. A 2004, 108, 10238-10244. https://doi.org/10.1021/jp047308n
  12. Polialov, E. Y.; Chemyak, V.; Tretiak, S.; Mukamel, S. J. Chem. Phys. 1999, 110, 8161-8175. https://doi.org/10.1063/1.478730
  13. Saltiel, J.; Kumar, V. K. R. J. Phys. Chem. A 2012, 116, 1 0548-10558. https://doi.org/10.1021/jp307896c
  14. Goodson, T. Annu. Rev. Phys. Chem. 2005, 56, 581-603. https://doi.org/10.1146/annurev.physchem.56.092503.141130
  15. Nishimura, Y.; Kamada, K.; Ikegami, M.; Nagahata, R.; Ara i, T. J. Photochem. Photobiol. A 2006, 178, 150-155. https://doi.org/10.1016/j.jphotochem.2005.10.041
  16. Lucas, N. T.; Notaras, E. G. A.; Cifuentes, M. P.; Humphre y, M. G. Organometallics 2003, 22, 284-301. https://doi.org/10.1021/om020203r
  17. Boens, N.; Tamai, N.; Yamazaki, I.; Yamazaki, T. Photochem. Photobiol. 1990, 52, 911-917. https://doi.org/10.1111/j.1751-1097.1990.tb08702.x