References
-
A. Berenstein and A. Zelevinsky, Canonical bases for the quantum group of type
$A_r$ and piecewise-linear combinatorics, Duke Math. J. 82 (1996), no. 3, 473-502. https://doi.org/10.1215/S0012-7094-96-08221-6 - A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases, and totally positive varieties, Invent. Math. 143 (2001), no. 1, 77-128. https://doi.org/10.1007/s002220000102
- N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
- D. Bump and M. Nakasuji, Integration on p-adic groups and crystal bases, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1595-1605.
- S. G. Gindikin and F. I. Karpelevic, Plancherel measure for symmetric Riemannian spaces of non-positive curvature, Dokl. Akad. Nauk SSSR 145 (1962), 252-255.
- J. Hong and S.-J. Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002.
-
J. Hong and H. Lee, Young tableaux and crystal B(
${\infty}$ ) for finite simple Lie algebras, J. Algebra 320 (2008), no. 10, 3680-3693. https://doi.org/10.1016/j.jalgebra.2008.06.008 - J. Kamnitzer, Mirkovic-Vilonen cycles and polytopes, Ann. of Math. (2) 171 (2010), no. 1, 245-294. https://doi.org/10.4007/annals.2010.171.245
- S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, Proc. London Math. Soc. (3) 86 (2003), no. 1, 29-69. https://doi.org/10.1112/S0024611502013734
-
S.-J. Kang, K.-H. Lee, H. Ryu, and B. Salisbury, A combinatorial description of the Gindikin-Karpelevich formula in type
$A_n^{(1)}$ , arXiv:1203.1640. https://doi.org/10.1016/j.jcta.2012.01.011 -
S.-J. Kang and K. C. Misra, Crystal bases and tensor product decompositions of
$U_q(G_2)$ -modules, J. Algebra 163 (1994), no. 3, 675-691. https://doi.org/10.1006/jabr.1994.1037 - M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516. https://doi.org/10.1215/S0012-7094-91-06321-0
- M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839-858. https://doi.org/10.1215/S0012-7094-93-07131-1
- M. Kashiwara, On crystal bases, Representations of groups (Banff, AB, 1994), 155-197, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995.
- M. Kashiwara and T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295-345. https://doi.org/10.1006/jabr.1994.1114
- M. Kashiwara and Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no. 1, 9-36. https://doi.org/10.1215/S0012-7094-97-08902-X
- H. H. Kim and K.-H. Lee, Representation theory of p-adic groups and canonical bases, Adv. Math. 227 (2011), no. 2, 945-961. https://doi.org/10.1016/j.aim.2011.02.017
- R. Langlands, Euler products, A James K. Whittemore Lecture in Mathematics given at Yale University, 1967.Yale Mathematical Monographs, 1. Yale University Press, New Haven, Conn.-London, 1971.
- K.-H. Lee, P. Lombardo, and B. Salisbury, Combinatorics of the Casselman-Shalika formula in type A, to appear in Proc. Amer. Math. Soc. (arXiv:1111.1134).
- K.-H. Lee and B. Salisbury, A combinatorial description of the Gindikin-Karpelevich formula in type A, J. Combin. Theory Ser. A 119 (2012), no. 5, 1081-1094. https://doi.org/10.1016/j.jcta.2012.01.011
- P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499-525. https://doi.org/10.2307/2118553
- P. Littelmann, Cones, crystals, and patterns, Transform. Groups 3 (1998), no. 2, 145-179. https://doi.org/10.1007/BF01236431
- G. Lusztig, Singularities, character formulas, and a q-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981), 208-229, Asterisque, 101-102, Soc. Math. France, Paris, 1983.
- G. Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhauser Boston Inc., Boston, MA, 1993.
- I. G. Macdonald, Spherical functions on a group of p-adic type, Publications of the Ramanujan Institute, No. 2. Ramanujan Institute, Centre for Advanced Study in Mathematics, University of Madras, Madras, 1971.
- P. J. McNamara, Metaplectic Whittaker functions and crystal bases, Duke Math. J. 156 (2011), no. 1, 1-31. https://doi.org/10.1215/00127094-2010-064
- S. Morier-Genoud, Geometric lifting of the canonical basis and semitoric degenerations of Richardson varieties, Trans. Amer. Math. Soc. 360 (2008), no. 1, 215-235 (electronic). https://doi.org/10.1090/S0002-9947-07-04216-X
- The Sage-Combinat community, Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2008; http://combinat.sagemath.org.
- A. Savage, Geometric and combinatorial realizations of crystal graphs, Algebr. Represent. Theory 9 (2006), no. 2, 161-199. https://doi.org/10.1007/s10468-005-0565-7
- W. A. Stein et al., Sage Mathematics Software (Version 5.11), The Sage Development Team, 2013; http://www.sagemath.org.
Cited by
- The flush statistic on semistandard Young tableaux vol.352, pp.5, 2014, https://doi.org/10.1016/j.crma.2014.03.007
- Connecting Marginally Large Tableaux and Rigged Configurations via Crystals vol.19, pp.3, 2016, https://doi.org/10.1007/s10468-015-9587-y
- Crystal ℬ ( λ ) $\mathcal {B}(\lambda )$ as a Subset of the Tableau Description of ℬ ( ∞ ) $\mathcal {B}(\infty )$ for the Classical Lie Algebra Types vol.18, pp.1, 2015, https://doi.org/10.1007/s10468-014-9485-8
- Description of B ( ∞ ) $\mathsf {B}(\infty )$ through Kashiwara Embedding for Lie Algebra Types E 6 and E 7 vol.20, pp.4, 2017, https://doi.org/10.1007/s10468-017-9667-2
- Generalized Young Walls for Classical Lie Algebras pp.1572-9079, 2019, https://doi.org/10.1007/s10468-018-9770-z