• Title/Summary/Keyword: crystal

Search Result 11,832, Processing Time 0.04 seconds

Lead Informatics Using Protein 3D-Structures

  • Ro, Seong-Gu;Shin, Dong-Kyu;Han, Hui-Jong;Jeon, Young-Ho;Jeong, Eui-Jun;Hwang, Kwang-Yeon;Kim, Hye-Yeon;Heo, Yong-Seok;Lee, Tae-Gyu;Kim, Jin-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2001.04a
    • /
    • pp.77-77
    • /
    • 2001
  • PDF

Effects of the crystal rotation on heat transfer and fluid flow in the modified floating-zone crystal growth (수정된 부유띠결정성장법에서 결정봉의 회전이 유동 및 열전달에 미치는 효과)

  • Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3322-3333
    • /
    • 1996
  • A numerical analysis has been conducted to investigate a modified floating-zone crystal growth process in which most of the melt surface is covered with a heated ring. The crystal rod is not only pulled downward but rotated around its axisymmetric line during crystal growth process in order to produce the flat interface of crystal growth and the single crystal growth of NaNO3 is considered in 6mm diameter. The present study is made from a full-equation-based analysis considering a pulling velocity in all of solid and liquid domains and both of solid-liquid interfaces are tracked simultaneously with a governing equation in each domain. Numerical results are mainly presented for the comparison of the surface shape of rotational crystal rod with that of no-rotational crystal rod and the effects of revolution speeds of the crystal rod. Results show that the rotation of crystal rod produces more its flat surface. In addition, the shape of crystal growth near the centerline is more concaved with the increase in the revolution speed of crystal rod. The flow pattern and temperature distribution is analyzed and presented in each case. As the pulling velocity of crystal rod is increasing, the free surface of the melt below the heated ring is enlarged due to the crystal interface migrating downward.

Decolorizing Characteristics of Crystal Violet by Enterobacter cloace MG82. (Enterobacter cloacae MG82에 의한 Crystal Violet의 탈색특성)

  • 정민선;지원대;김병홍;정영건
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.269-274
    • /
    • 1998
  • Decolorizing characteristics of crystal violet by Enterobacter cloace MG82, which can decolorize rapidly triphenylmethane dyes, were investigated. The higher growth and decolorization activity was shown at big ratio of dissolved oxygen in the medium. The decolorization activity of crystal violet revealed highest at the middle of lag phase. As the concentration of crystal violet was higher, the growth of E. cloacae MG82 and decolorizing activity of crystal violet by this strain were worse. The maximum concentration of crystal violet at which E. cloacae MG82 be able to grow was 375 ${\mu}$M. E. cloacae MG82 was not able to use the crystal violet itself as a sole carbon source. So, it was shown that growth of E. cloacae MG82 and decolorization activity of crystal violet by this strain needed addition of another energy sources except this dye.

  • PDF

Crystal growth from melt in combined heater-magnet modules

  • Rudolph, P.;Czupalla, M.;Dropka, N.;Frank-Rotsch, Ch.;KieBling, F.M.;Klein, O.;Lux, B.;Miller, W.;Rehse, U.;Root, O.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.215-222
    • /
    • 2009
  • Many concepts of external magnetic field applications in crystal growth processes have been developed to control melt convection, impurity content and growing interface shape. Especially, travelling magnetic fields (TMF) are of certain advantages. However, strong shielding effects appear when the TMF coils are placed outside the growth vessel. To achieve a solution of industrial relevance within the framework of the $KRISTMAG^{(R)}$ project inner heater-magnet modules(HMM) for simultaneous generation of temperature and magnetic field have been developed. At the same time, as the temperature is controlled as usual, e.g. by DC, the characteristics of the magnetic field can be adjusted via frequency, phase shift of the alternating current (AC) and by changing the amplitude via the AC/DC ratio. Global modelling and dummy measurements were used to optimize and validate the HMM configuration and process parameters. GaAs and Ge single crystals with improved parameters were grown in HMM-equipped industrial liquid encapsulated Czochralski (LEC) puller and commercial vertical gradient freeze (VGF) furnace, respectively. The vapour pressure controlled Czochralski (VCz) variant without boric oxide encapsulation was used to study the movement of floating particles by the TMF-driven vortices.

UV-curable liquid crystal for a retarder

  • Hasebe, Hiroshi;Kuwana, Yasuhiro;Nakata, Hidetoshi;Nishiyama, Isa;Takeuchi, Kiyofumi;Takatsu, Haruyoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.159-162
    • /
    • 2009
  • A liquid crystalline monomer is applicable to fabricate a retarder in which various types of alignment are fixed. We have developed the monomer, UV-curable liquid crystal optimized for coating processes. Applications and materials for the retarder are reviewed.

  • PDF

A study on the development of jewelry design based on the diamond crystal structure (다이아몬드 결정구조를 모티브한 주얼리 디자인 개발에 관한 연구)

  • Eunju Park;Soi Moon;Jeongwon Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.158-164
    • /
    • 2023
  • The meaning of the diamond crystal structure and the formative beauty of the crystal form were designed from a new perspective and expressed in jewelry. In this study, we examined the literature on the crystal structure of diamonds and analyzed cases of jewelry design based on the formative characteristics of diamond crystal structure. we newly interpreted the meaning and value of diamond crystal structure, and studied the figurative design that can show the aesthetic effect of the crystal structure by designing the diamond crystal structure as jewelry. By presenting jewelry designs that take advantage of the symmetry effect of the diamond crystal structure and the repetition of the sculptural beauty, we hope that the fundamental beauty and cultural meaning of gemstones will be re-recognized.

A study on the repeatability of large size of AlN single crystal growth (AlN 단결정 성장에 대한 반복 성장성에 관한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.148-151
    • /
    • 2018
  • A large single crystal of AlN was grown by PVT (Physical Vapor Transport) method. The AlN crystal shaped hexagonal of the diameter of about 46 mm and the thickness of 7.6 mm was grown using 33 mm seed crystal which was grown and made by ourselves. We tried to find out repeatable growth possibility for AlN crystal growth and then to evaluate the repeatability of the growth condition of the temperature of $1950{\sim}2100^{\circ}C$ and the ambient pressure of 0.1~1 atm.

Thermal Stresses Near the Crystal-Melt Interface During the Floating-Zone Growth of CdTe Under Microgravity Environment (미세중력장 CdTe 흘로우팅존 생성에서 결정체-용융액 계면주위의 열응력)

  • Lee Kyu-Jung
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.100-107
    • /
    • 1998
  • A numerical analysis of thermal stress over temperature variations near the crystal-melt interface is carried out for a floating-zone growth of Cadmium Telluride (CdTe). Thermocapillary convection determines crystal-melt interfacial shape and signature of temperature in the crystal. Large temperature gradients near the crystal-melt interface yield excessive thermal stresses in a crystal, which affect the dislocations of the crystal. Based on the assumption that the crystal is elastic and isotropic, thermal stresses in a crystal are computed and the effects of operating conditions are investigated. The results show that the extreme thermal stresses are concentrated near the interface of a crystal and the radial and the tangential stresses are the dominant ones. Concentrated heating profile increases the stresses within the crystal, otherwise, the pulling rate decreases the stresses.

  • PDF

Exploring the Properties and Potential of Single-crystal NCM 811 for Lithium-ion Batteries

  • Yongseok Lee;Seunghoon Nam
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Single-crystal Ni-rich NCM is a material that has drawn attention in the field of lithium-ion batteries due to its high energy density and long cycle life. In this study, we investigated the properties of single-crystal NCM 811 and its potential for use in lithium-ion batteries. High-quality single crystals of NCM 811 were successfully synthesized by crystal growth via a flux method. The single-crystal nature of the samples was confirmed through detailed characterization techniques, such as scanning electron microscopy and x-ray diffraction with Rietveld refinement. The crystal structure and electrochemical performances of the single-crystal NCM 811 were analyzed and compared to its poly-crystal counterpart. The results indicated that single-crystal NCM 811 had electrochemical performance and thermal stability superior to poly-crystalline NCM 811, making it a suitable candidate for high-performance batteries. The findings of this study contribute to a better understanding of the characteristics and potential of single-crystal NCM 811 for lithium-ion batteries.

Preparation and Properties of a Complex Crystal for Nonlinear Optical Applications: Cadmium mercury Thiocyanate

  • Jiang, Minhua;Yuan, Dourong;Liu, Mingguo;Xu, Dong
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.375-398
    • /
    • 1996
  • A complex nonlinear optical crystal Cadmium Mercury Thiocyanate with size 18*18*20mm3 was grown. It possesses chemical stability below 247$^{\circ}C$, no cleavage, and high mechanical strength. Blue light second harmonic of diode laser was realized.

  • PDF