DOI QR코드

DOI QR Code

Effects of Thickness, Elastomer Types and Thinner Content on Actuation Performance of Electro Active Dielectric Elastomers

탄성체의 두께, 종류 및 희석제 함유량이 전기활성 유전탄성체의 구동 성능에 미치는 영향

  • 이빈 (영남대학교 기계공학과 대학원) ;
  • 임정걸 (영남대학교 기계공학과 대학원) ;
  • 류상렬 (영남대학교 기계공학부) ;
  • 이동주 (영남대학교 기계공학부)
  • Received : 2013.11.11
  • Accepted : 2014.02.20
  • Published : 2014.02.28

Abstract

The actuation performance of an EADE (Electro-active dielectric elastomer) is studied as functions of thinner content, thickness and types of the dielectric elastomer such as natural (NR), acrylonitrile-butadiene (NBR), and silicon (KE-12) rubbers. With a decrease in elastomer thickness ($1{\rightarrow}0.5{\rightarrow}0.25{\rightarrow}0.1{\rightarrow}0.05$ mm) and an increase in thinner content ($0{\rightarrow}30{\rightarrow}50$ phr), the actuating displacement of KE-12 elastomer is increased, however their breakdown occurs at low voltage. For the same thickness (1 mm), the displacement of KE-12 elastomer shows a higher value (2.24 mm) compared to that of NR or NBR at the same applied voltage of 25 kV. The KE-12 has the lowest elastic modulus and the NBR has the highest one among the tested elastomers. However, the displacement of NBR elastomer is higher compared to that of NR because of high dielectric constant. It is found that the important factors of EADE actuator are a thickness, modulus and dielectric constant of the elastomer.

실리콘 KE-12, NBR 그리고 NR 등의 유전 탄성체 종류, 두께 및 희석제 함유량을 함수로 한 전기활성 유전탄성체(EADE) 구동 성능에 대해 연구하였다. 탄성체의 두께($1{\rightarrow}0.5{\rightarrow}0.25{\rightarrow}0.1{\rightarrow}0.05$ mm)의 감소에 따라 그리고 희석제의 함유량 증가에 따라 KE-12 탄성체의 작동변위는 증가하였지만, 유전파괴는 낮은 전압에서 발생되었다. 동일한 탄성체 두께(1 mm)에 대해서 KE-12의 변위(2.24 mm)는 동일한 전압(25 kV)에서 NBR 혹은 NR보다 더 높게 나타났다. 시험한 탄성체 종류 중 KE-12는 가장 낮은 탄성계수를 NBR은 가장 높은 탄성계수 나타냈다. 하지만, NBR 탄성체의 변위는 높은 유전상수 때문에 NR의 경우 보다 높았다. EADE 구동기의 중요한 요소는 탄성체의 두께, 탄성계수 및 유전상수임을 확인하였다.

Keywords

References

  1. Yoseph, B., EAP Actuators as Artificial Muscles, SPIE PRESS, 2004.
  2. Kim, J.H., Yun, S.R., Bae, S.H., and Ounaies, Z., "Conductive Polymer Coated Electro-active Paper (EAPap)", Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 15, No. 9, 2005, pp. 1077-1083. https://doi.org/10.5050/KSNVN.2005.15.9.1077
  3. Chung, S.Y., "Electroactive Smart Polymer(Artificial Muscle)", Polymer Science and Technology, Vol. 19(5), 2008, pp. 420-424.
  4. Pelrine, R., Kornbluh, R., Pei, Q., and Joseph, J., "High-speed Electrically Actuated Elastomers with Strain Greater Than 100%," Science, Vol. 287, No. 5454, 2000, pp. 836-839. https://doi.org/10.1126/science.287.5454.836
  5. Kim, B.C., Chung, J.A., Cho, H.J., Shin, S.H., Lee, H.S., Moon, H.P., Choi, H.R., and Koo, J.C., "Biomimetic Actuator and Sensor for Robot Hand", Transactions of the KSME(A), Vol. 36, No. 12, 2012, pp. 1497-1502. https://doi.org/10.3795/KSME-A.2012.36.12.1497
  6. Yuse, K., Guyomar, D., Audigier, D., Eddiai, A., Meddad, M., and Boughaleb, Y., "Adaptive Control of Stiffness by Electroactive Polyurethane", Sensors and Actuators A, Vol. 189, 2013, pp. 80-85.
  7. Ozsecen, M.Y., and Mavroidis, C., "Nonlinear Force Control of Dielectric Electroactive Polymer Actuators", Proceedings of SPIE, Vol. 7642, 2010, 76422C1-8.
  8. Lee, J.M., Ryu, S.R., Lee D.J., and Lin, Z.J., "An Experimental Study for Electro-active Polymer Electrode and Actuator", Composites Research, Vol. 26, No. 5, 2013, pp. 289-294. https://doi.org/10.7234/composres.2013.26.5.289
  9. Hwang, I.L., Kim, K.Y., Lee, K.Y., and Lim, D.S., "Dielectric Relaxation Properties of Natural Rubber Nanocomposites due to Radiation Deterioration", Applied Chemistry, Vol. 12, No. 2, 2008, pp. 225-228.
  10. Lee, J.M., Ryu, S.R., and Lee D.J., "Electrical and Mechanical Properties of Carbon Particles Reinforced Rubber for Electroactive Polymer Electrode", Transactions of the KSME(A), Vol. 37, No. 12, 2013, pp. 1465-1471.

Cited by

  1. 복합재료 전극을 가진 전기활성고분자 구동기의 설계 vol.32, pp.5, 2014, https://doi.org/10.7234/composres.2019.32.5.211