DOI QR코드

DOI QR Code

A Nano-power Switched-capacitor Voltage Reference Using MOS Body Effect for Applications in Subthreshold LSI

  • Zhang, Hao (Graduate School of Information, Production and System, Waseda University) ;
  • Huang, Meng-Shu (Graduate School of Information, Production and System, Waseda University) ;
  • Zhang, Yi-Meng (Graduate School of Information, Production and System, Waseda University) ;
  • Yoshihara, Tsutomu (Graduate School of Information, Production and System, Waseda University)
  • Received : 2013.01.25
  • Accepted : 2013.11.20
  • Published : 2014.02.28

Abstract

A nano-power CMOS voltage reference is proposed in this paper. Through a combination of switched-capacitor technology with the body effect in MOSFETs, the output voltage is defined as the difference between two gate-source voltages using only a single PMOS transistor operated in the subthreshold region, which has low sensitivity to the temperature and supply voltage. A low output, which breaks the threshold restriction, is produced without any subdivision of the components, and flexible trimming capability can be achieved with a composite transistor, such that the chip area is saved. The chip is implemented in $0.18{\mu}m$ standard CMOS technology. Measurements show that the output voltage is approximately 123.3 mV, the temperature coefficient is $17.6ppm/^{\circ}C$, and the line sensitivity is 0.15 %/V. When the supply voltage is 1 V, the supply current is less than 90 nA at room temperature. The area occupation is approximately $0.03mm^2$.

Keywords

References

  1. S. Narendra, J. Tschanz, J. Hofsheier, B. Bloechel, S. Vangal, Y. Hoskote, S. Tang, D. Somasekhar, A. Keshavarzi, V. Erraguntla, G. Dermer, N. Borkar, S. Borkar, and V. De, "Ultra-low voltage circuits and processor in 180 nm to 90 nm technologies with a swapped-body biasing technique," Solid-State Circuit Conference, 2004. ISSCC 2004. Digest of Technical paper. IEEE International, pp.156-518, Feb., 2004.
  2. S. Hanson, B. Zhai, M. Seok, B. Cline, K. Zhou, M. Singhal, M. Minuth, J. Olson, L. Nazhandali, T. Austin, D. Sylvester, and D. Blaauw, "Exploring variability and performance in a sub-200-mV processor," Solid-State Circuits, IEEE Journal of, vol.43, no.4, pp.881-891, Apr., 2008. https://doi.org/10.1109/JSSC.2008.917505
  3. T.H. Kim, J. Liu, J. Keane, and C. Kim, "A 0.2 V, 480 kb subthreshold SRAM with 1 k cells per bitline for ultra-low-voltage computing," Solid- State Circuit, IEEE Journal of, vol. 43, no. 2, pp. 518-529, Feb., 2008. https://doi.org/10.1109/JSSC.2007.914328
  4. D. Daly and A. Chandrakasan, "A 6-bit, 0.2 V to 0.9 V highly digital flash ADC with comparator redundancy," Solid-State Circuits, IEEE Journal of, vol.44, no.11, pp.3030-3038, Nov., 2009. https://doi.org/10.1109/JSSC.2009.2032699
  5. G. De Vita, G. Iannaccone, and P. Andreani, "A 300 nW, 12 ppm/${^{\circ}C}$ voltage reference in a digital 0.35 ${\mu}m$ CMOS process," VLSI Circuits, 2006. Digest of Technical Papers. 2006 Symposium on, pp.81-82, Jun., 2006.
  6. G. De Vita and G. Iannaccone, "A sub-1-V, 10 ppm/${^{\circ}C}$ , nanopower voltage reference generator," Solid- State Circuits, IEEE Journal of, vol.42, no.7, pp.1536-1542, Jul., 2007. https://doi.org/10.1109/JSSC.2007.899077
  7. K. Ueno, T. Hirose, T. Asai, and Y. Amemiya, "A 300 nW, 15 ppm/${^{\circ}C}$ , 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs," Solid-State Circuits, IEEE Journal of, vol.44, no.7, pp.2047-2054, Jul., 2009. https://doi.org/10.1109/JSSC.2009.2021922
  8. L. Junghyup and C. S. Hwan, "A 210 nW 29.3 ppm/${^{\circ}C}$ 0.7 V voltage reference with a temperature range of -50 to 130 ${^{\circ}C}$ in 0.13 ${\mu}m$ CMOS," VLSI Circuits (VLSIC), 2011 Symposium on, pp.278-279, Jun., 2011.
  9. K. N. Leung and P. Mok, "A CMOS voltage reference based on weighted  Vgs for CMOS lowdropout linear regulators," Solid-State Circuits, IEEE Journal of, vol.38, no.1, pp.146-150, Jan., 2003. https://doi.org/10.1109/JSSC.2002.806265
  10. G. Giustolisi, G. Palumbo, M. Criscione, and F. Cutri, "A low-voltage low-power voltage reference based on subthreshold MOSFETs," Solid-State Circuits, IEEE Journal of, vol.38, no.1, pp.151-154, Jan., 2003. https://doi.org/10.1109/JSSC.2002.806266
  11. G. De. Vita and G. Iannaccone, "An ultra-lowpower, temperature compensated voltage reference generator," Custom Integrated Circuits Conference, 2005. Proceedings of the IEEE 2005, pp.751-754, Sep., 2005.
  12. A. J Annema and G. Goksun, "A 0.0025 mm2 bandgap voltage reference for 1.1 V supply in standard 0.16 ${\mu}m$ CMOS," Solid-State Circuits Conference, 2012. ISSCC 2012. Digest of Technical Papers. IEEE International, pp.364-366, Feb., 2012.
  13. L. Magnelli, F. Crupi, P. Corsonello, C. Pace, and G. Iannaccone,"A 2.6 nW, 0.45 V temperaturecompensated subthreshold CMOS voltage reference," Solid-State Circuits, IEEE Journal of, vol.46, no.2, pp.465-474, Feb., 2011. https://doi.org/10.1109/JSSC.2010.2092997
  14. M. Seok, G. Kim, D. Blaauw, and D. Sylvester, "A portable 2-Transistor picowatt temperature compensated voltage reference operating at 0.5 V," Solid-State Circuits, IEEE Journal of, vol.47, no.10, pp.2534-2545, Oct., 2012. https://doi.org/10.1109/JSSC.2012.2206683
  15. J. Pan, Z. Inoue, Z. Huang, and W. Huang, "A lowpower sub-1 V low-voltage reference using body effect," IEICE TRANS. Fundamentals, vol.E90-A, no.4, pp.748-755, Apr., 2007. https://doi.org/10.1093/ietfec/e90-a.4.748
  16. B. Westwick, "Switched capacitor bandgap reference circuit having a time multiplexed bipolar transistor," U.S. Patent 5,059,820, Oct.22, 1991.
  17. B. Gilbert and S. Shu, "Switching bandgap voltage reference," U.S. Patent 5,563,504, Oct.8, 1996.
  18. B. Gregoire, "Switched capacitor voltage reference circuits using transconductance circuit to generate reference voltage," U.S. Patent 6,819,163, Nov.16, 2004.
  19. D. John and K. Martin, "Analog Integrated Circuits Design," Wiley, New York, 1997.
  20. H. W. Huang, C. Y. Hsieh, K. H. Chen, and S. Y. Kuo, "A 1 V 16.9 ppm/${^{\circ}C}$ 250 nA switchedcapacitor CMOS voltage reference," Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp.437-439, Feb., 2008.
  21. H. Oguey and D. Aebischer, "CMOS current reference without resistance," Solid-State Circuits, IEEE Journal of, vol.32, no.7, pp.1132-1135, Jul., 1997. https://doi.org/10.1109/4.597305
  22. B. Razavi, "Design of Analog CMOS Integrated Circuits," McGRAW-HILL, 2001.
  23. U. Gatti, F. Maloberti, and G. Torelli, "A novel CMOS linear transconductance cell for continuoustime filters," Circuits and Systems, 1990. IEEE International Symposium on, pp.1173-1176, vol.2, May., 1990.
  24. W. Kester, "Sample-and-Hold Amplifiers," Tutorial, Analog Devices, 2009.
  25. C. Galup-Montoro, M. Schneider, and I. Loss, "Series-parallel association of FET's for high gain and high frequency applications," Solid-State Circuits, IEEE Journal of, vol.29, no.9, pp.1094- 1101, Sep., 1994. https://doi.org/10.1109/4.309905
  26. E. Ebrard, B. Allard, P. Candelier, and P. Waltz, "Review of fuse and antifuse solutions for advanced standard CMOS technologies," Microelectronics Journal, vol.40, no.12, pp.1755- 1765, Dec., 2009. https://doi.org/10.1016/j.mejo.2009.09.007
  27. J. H. Fischern, "Noise sources and calculation techniques for switched capacitor filters," Solid- State Circuits, IEEE Journal of, vol.17, no.4, pp.742-752, Aug., 1982. https://doi.org/10.1109/JSSC.1982.1051806
  28. A. Acharya, P. J. Hurst, and S. H. Lewis, "Thermal noise from switches in a switched-capacitor gain stage," Mixed-Signal Design, 2003. Southwest Symposium on, pp.121-126, 2003.
  29. W. K. Chen, "The Circuits and Filters Handbook," CRC Press, 2002.