DOI QR코드

DOI QR Code

일시적인 형질전환 분석을 이용한 testosterone에 의한 PPARγ-의존적 지방세포생성 조절에 관한 연구

Study on PPARγ-dependent adipogenesis regulation by testosterone using transient transfection assays

  • 투고 : 2013.12.31
  • 심사 : 2014.01.29
  • 발행 : 2014.02.28

초록

본 연구는 testosterone이 지방세포생성에 미치는 영향과 그것에 대한 분자생물학적 조절기전을 역전사-중합효소 연쇄반응과 일시적인 형질전환 분석을 통해 조사하였다. 정소절제수술 마우스(CAST)에 비해 testosterone이 처리된 정소절제수술 마우스(CAST+T)는 백색지방조직 무게와 지방세포 특이유전자($PPAR{\gamma}$와 aP2)의 발현이 감소되었다. In vivo 결과와 일치되게, testosterone 처리는 분화된 3T3-L1세포에서의 triglyceride축적과 지방세포 특이유전자($PPAR{\gamma}$와 aP2)의 발현을 억제시켰다. Testosterone에 의해 활성화된 androgen receptor(AR)는 $PPAR{\gamma}$ transfection에 의해 유도된 luciferase reporter gene 활성을 억제하였다. 따라서 본 연구결과는 testosterone이 AR을 통해 지방세포분화에 대한 $PPAR{\gamma}$의 작용을 억제 조절한다는 것을 시사하고 있다.

This study is to investigate the effects of testosterone on adipogenesis and its molecular mechanism using RT-PCR analysis and transient transfection assays. Castrated(CAST) mice treated with testosterone had lower white adipose tissue weights and expression of adipocyte-specific genes($PPAR{\gamma}$ and aP2) than CAST control mice. Consistent with the in vivo data, testosterone treatment inhibited triglyceride accumulation and expression of adipocyte-specific genes($PPAR{\gamma}$ and aP2) in differentiated 3T3-L1 cells compared with control group. Testosterone-activated androgen receptor(AR) repressed the luciferase reporter gene activity induced by $PPAR{\gamma}$ transfection. Thus, these results suggest that testosterone downregulates the actions of $PPAR{\gamma}$ on adipogenesis through AR.

키워드

참고문헌

  1. B. M. Spiegelman, J. S. Filter, "Adipogenesis and obesity: rounding out the big picture," Cell, vol. 87, no. 3, pp. 377-389, Nov. 1996. https://doi.org/10.1016/S0092-8674(00)81359-8
  2. E. D. Rosen, C. J. Waikey, P. Puigserver, B. M. Spiegelman, "Transcriptional regulation of adipogenesis," Genes Devevopment, vol. 14, no. 11, pp. 1293-1307, Jun. 2000.
  3. Y. R. Lea-Currie, D. Monroe, M. K. Mcintosh, "Dehydroepiandrosterone and related steroids alter 3T3-L1 preasipocyte proliferation and differentiation," Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, vol. 123, no. 1, pp. 17-25, May. 1999. https://doi.org/10.1016/S0742-8413(99)00003-1
  4. B. M. Spiegelman, "PPAR-gamma: adipogenic regulator and thiazolidinedione receptor," Diabetes, vol. 47, no. 4, pp. 507-514, Apr. 1998. https://doi.org/10.2337/diabetes.47.4.507
  5. A. Tchernof, E. T. Poehlman, J. P. Despres, "Body fat distribution, the menopause transition, and hormone replacement therapy," Diabetes & Metabolism, vol. 26, no. 1, pp. 12-20, Feb. 2000.
  6. R. Singh, J. N. Artaza, W. E. Taylor, N. F. Gonwalez-Cadavid, S. Bhasin, "Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through and androgen receptor-mediated pathway," Endocrinology, vol. 144, no. 11, pp. 5081-5088, Nov. 2003. https://doi.org/10.1210/en.2003-0741
  7. M. N. Dieudonne, R. Pecquery, M. C. Leneveu, Y. Giudicelli, "Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: Evidence for sex and site-related specificities and possible involvement of insulinlike growth factor 1 receptor and peroxisome proliferatoractivated receptor ${\gamma}$2," Endocrinology, vol. 141, no. 2, pp. 649-656, Feb. 2000. https://doi.org/10.1210/endo.141.2.7293
  8. M. N. Dieudonne, R. Pecquery, A. Boumediene, M. C. Leneveu, Y. Giudicelli, "Androgen receptors in human preadipocytes and adipocytes: regional specificities and regulation by sex steroids," American Journal of Physiology, vol. 274, no. 6, pp. C1645-C1652, Jun. 1998. https://doi.org/10.1152/ajpcell.1998.274.6.C1645
  9. F. Claessens, S. Denayer, N. Van Tilborgh, S. Kerkhofs, C. Helsen, A. Haelens, "Diverse roles of androgen receptor (AR) domains in AR-mediated signaling," Nuclear Receptor Signaling, vol. 27, no. 6, pp. e008, Jun. 2008.