DOI QR코드

DOI QR Code

A Design and Implementation of Wi-Fi Based Unmanned Ship Control System

무선랜 기반 무인선박 제어시스템 설계 및 구현

  • Kim, Dong-Hyun (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Chae-Seok (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Jong-Deok (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2013.11.28
  • Accepted : 2014.01.10
  • Published : 2014.02.28

Abstract

The unmanned ship control system controls the unmanned ship at a distance in ocean. Expecially, in order to control the unmanned ship, it needs the wireless communication networks and we use the IEEE 802.11 based WLAN. The IEEE 802.11 based WLAN technology for supporting a wide bandwidth is suitable for unmanned ship control system which has to transmit the multimedia data. First, we design the system structure for controlling the unmanned ship. Then, in order to overcome the limited communication area, we design the network structure for the unmanned ship communication network which can use a various communication network. we implemented and evaluated the unmanned ship system based on WLAN. We controlled the unmanned ship by use the WLAN and confirmed the signal feature of WLAN in the ocean.

무인선박 제어 시스템은 원격지에서 무인선박을 제어, 통제하기 위한 시스템이다. 특히, 무인선박을 제어하기 위해서는 환경에 적합한 무선 통신망이 필요한데 본 논문은 IEEE 802.11 기반 무선랜을 이용한다. IEEE 802.11기반 무선랜 기술은 광대역을 지원하는 무선 접속기술로 비디오, 오디오와 같은 멀티미디어 및 데이터를 전송해야하는 무인선박 제어시스템에 적합하다. 본 논문에서는 무인선박을 제어하기 위한 전체적인 시스템 구조를 설계한다. 그리고 무선랜의 제한적 통신반경을 극복하기 위해 여러 가지 통신망을 사용할 수 있는 통신망 구조를 설계하였다. 설계된 무선랜기반 무인선박 제어시스템을 구현하고 테스트하였다. 테스트 결과 무선랜을 이용하여 무인선박을 제어 통제했으며, 더불어 해양 지역에서의 무선랜 전파 특성을 분석하였다.

Keywords

References

  1. R. Bruno, M. Conti, and E. Gregori, " Mesh Network: Commodity Multihop Ad Hoc Networks," IEEE Com. Mag., pp. 123-131, Mar. 2005.
  2. S. Gezici, " A survey on wireless position estimation," Springer Wireless Personal Communications, vol. 44, no. 3, pp. 263-282, Feb. 2008.
  3. F. Gustafsson and F. Gunnarsson, " Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements," IEEE Signal Processing Mag., vol. 22, no. 4, pp. 41-53, July 2005. https://doi.org/10.1109/MSP.2005.1458284
  4. G. L. Turin, W. S. Jeweel and T. L. Johnston,, "Simulation of urban vehicle-monitoring systems," IEEE Trans. on Vehicular Technology, vol. 21, no. 1, pp. 9-16, 1972. https://doi.org/10.1109/T-VT.1972.23493
  5. J. Caffery, and G. Stuber, " Subscriber location in CDMA cellular networks," IEEE Trans, on Vehicular Technology, vol. 47, no. 2, pp. 406-416, 1998. https://doi.org/10.1109/25.669079
  6. M. Vossiek, L. W etc., " Wireless local positioning," IEEE Microwave Mag., vol. 4, no. 4, pp 77-86, Dec. 2003. https://doi.org/10.1109/MMW.2003.1266069
  7. H. HASHEMI, " Pulse raging radio-location technique and its application to channel assignment in digital cellular radio," IEEE Vehicle Tech Conference, pp. 675-680, 1991.
  8. X. Shen, J. Mark and J. Ye, "Mobile location estimation in cellular networks using fuzzy logic," IEEE Vechcle Tech. Conf., pp. 2108-2114, 2000.
  9. IETF MANET (Mobile Ad hoc Networks) Working Group, MANET Charter's page in http://www.ietf.org/html. charters.
  10. IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification, IEEE 802.11-2007.