DOI QR코드

DOI QR Code

Cytoprotective Effects of Phaeophyta Extracts from the Coast of Jeju Island in HT-22 Mouse Neuronal Cells

제주 연안 갈조류 추출물의 신경세포 보호효과

  • Shin, Dong-Bum (Dept. of Food Science and Nutrition, Jeju National University) ;
  • Han, Eun-Hye (Dept. of Food Science and Nutrition, Jeju National University) ;
  • Park, Sung-Soo (Dept. of Food Science and Nutrition, Jeju National University)
  • 신동범 (제주대학교 식품영양학과) ;
  • 한은혜 (제주대학교 식품영양학과) ;
  • 박성수 (제주대학교 식품영양학과)
  • Received : 2013.10.08
  • Accepted : 2013.10.21
  • Published : 2014.02.28

Abstract

Marine algae have long been recognized as a health and beauty food, based on its anti-tumor, anti-inflammatory and anti-obesity activities. In this study, methanol extracts were prepared from 10 different phaeophyta, after which DPPH radical scavenging and cytoprotective activities of HT-22 cells against ${\beta}$-amyloid protein ($A{\beta}$), which has neurotoxic effects, were investigated. In DPPH experiments, Ecklonia cava and Ishige okamurai showed strong ROS scavenging activities, whereas eight other phaeophyta including Petalonia binghamiae (P. bin) showed weak ROS scavenging activities. To validate the cytoprotective effects of 10 different phaeophyta in $A{\beta}$-induced HT-22 cells, protein expression levels of APP, BACE1, iNOS, phosphorylated ERK1/2, phosphorylated p38 and phosphorylated JNK1/2 were determined along with MTT assay. In the MTT assay, P. bin showed the best effective cytoprotective activity at a concentrations of $25{\mu}g/mL$, whereas Sargassum confusum, Colpomenia sinuosa, Myelophycus simplex, and Sargassum hemiphyllum showed potential. Determination of protein expression levels related to $A{\beta}$-induced neurotoxicity in the five selected phaeophyta showed that P. bin inhibited BACE1 and iNOS expression in $A{\beta}$-induced HT-22 cells. These results indicate that the cytoprotective effects of P. bin are mediated by suppressing the pathways involving $A{\beta}$-induced ERK and p38 activation.

항암, 항염증 및 비만억제 등의 생리활성을 지닌 해조류는 최근 건강기능 식품, 기능성 화장품 그리고 의약품 산업 분야에서 미용과 건강식품 소재로 각광받고 있다. 본 연구에서는 10종의 갈조류 메탄올 추출물을 이용하여 1,1-diphenyl-2-picrylhydrazyl(DPPH) 라디칼 소거능과 아밀로이드 베타 단백질($A{\beta}$)의 신경독성에 대한 HT-22 신경세포 보호효과를 조사함으로써 천연물로부터 안전하고 새로운 신경세포 보호소재를 개발해내고자 한다. DPPH 라디칼 소거능의 경우 미역쇠를 포함한 8종의 갈조류에서는 비교적 낮은 활성산소 소거능을 보인 반면, 감태와 패에서 강력한 활성산소 소거능이 나왔다. $A{\beta}$의 신경독성에 대해 10종의 갈조류 추출물이 갖는 HT-22 신경세포 보호효과를 검증하기 위해 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) 분석과 APP, BACE1, iNOS 단백질의 발현양상 및 ERK1/2, p38, JNK1/2 단백질의 활성화 양상을 분석했다. MTT 분석 결과, $A{\beta}$의 신경독성으로부터 미역쇠가 $25{\mu}g/mL$의 농도에서 가장 효과적으로 세포를 보호하고 있는 것으로 나타났고, 알쏭이모자반, 불레기말, 바위수염, 짝잎모자반도 세포 보호효과가 있는 것으로 나타났다. 세포 보호효과가 있는 것으로 밝혀진 5종의 갈조류를 가지고 수행한 단백질 발현분석 결과, 미역쇠는 $A{\beta}$의 신경독성에 의해 HT-22 신경세포에서 발현되는 단백질인 BACE1과 iNOS의 발현을 저해하였다. 이는 미역쇠의 세포보호효과가 $A{\beta}$의 신경독성으로부터 일어난 ERK와 p38의 활성화에 연관된 세포신호전달 경로를 억제하는 것으로 보인다. 그러므로 특히 식용 갈조류인 미역쇠는 $A{\beta}$에 의해 유도된 신경독성에 대해서 신경세포 보호효과를 갖는 건강기능 식품 소재로서의 가치가 충분한 것으로 사료된다.

Keywords

References

  1. Lee YP, Kang SY. 2001. A catalogue of the seaweeds in Korea. Jeju National University Press, Jeju, Korea. p 477.
  2. Cha SH, Ahn GN, Heo SJ, Kim KN, Lee KW, Song CB, Cho SK, Jeon YJ. 2006. Screening of extracts from marine green and brown algae in Jeju for potential marine angiotensin-1 converting enzyme (ACE) inhibitory activity. J Korean Soc Food Sci Nutr 35: 307-314. https://doi.org/10.3746/jkfn.2006.35.3.307
  3. Noda H, Amano H, Arshima K, Hashimoto S, Nisizawa W. 1989. Studies on the antitumor activity of marine algae. Bull Japan Soc Sci Fish 55: 1259-1264. https://doi.org/10.2331/suisan.55.1259
  4. Schwartsmann G, Brondani da Rocha A, Berlinck RG, Jimeno J. 2001. Marine organisms as a source of new anticancer agents. Lancet Oncol 2: 221-225. https://doi.org/10.1016/S1470-2045(00)00292-8
  5. Kim SC, Park SY, Hyoun JH, Cho H, Kang JH, Lee YK, Park DB, Yoo ES, Kang HK. 2004. The cytotoxicity of Scytosiphon lomentaria against HL-60 promyelocytic leukemia cells. Cancer Biother Radiopharm 19: 641-648. https://doi.org/10.1089/cbr.2004.19.641
  6. Kang SI, Kim MH, Shin HS, Kim HM, Hong YS, Park JG, Ko HC, Lee NH, Chung WS, Kim SJ. 2010. A water- soluble extract of Petalonia binghamiae inhibits the expression of adipogenic regulators in 3T3-L1 preadipocytes and reduces adiposity and weight gain in rats fed a high-fat diet. J Nutr Biochem 21: 1251-1257. https://doi.org/10.1016/j.jnutbio.2009.11.008
  7. Yoon HS, Koh WB, Oh YS, Kim IJ. 2009. The anti-melanogenic effects of Petalonia binghamiae extracts in $\alpha$-melanocyte stimulating hormone-induced B16F10 murine melanoma cells. J Korean Soc Appl Biol Chem 52: 564-567. https://doi.org/10.3839/jksabc.2009.095
  8. Heo SJ, Park EJ, Lee KW, Jeon YJ. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96: 1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
  9. Athukorala Y, Kim KN, Jeon YJ. 2006. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem Toxicol 44: 1065-1074. https://doi.org/10.1016/j.fct.2006.01.011
  10. Ryu G, Park SH, Kim ES, Choi BW, Ryu SY, Lee BH. 2003. Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown alga Sargassum sagamianum. Arch Pharm Res 26: 796-799. https://doi.org/10.1007/BF02980022
  11. Panayi AE, Spyrou NM, Iversen BS, White MA, Part P. 2002. Determination of cadmium and zinc in Alzheimer's brain tissue using inductively coupled plasma mass spectrometry. Neurol Sci 195: 1-10. https://doi.org/10.1016/S0022-510X(01)00672-4
  12. Selkoe DJ. 2001. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81: 741-756.
  13. Selkoe DJ. 1999. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399: A23-A31. https://doi.org/10.1038/399a023
  14. Hardy J, Duff K, Hardy KG, Perez-Tur J, Hutton M. 1998. Genetic dissection of Alzheimer's disease and related dementias: amyloid and its relationship to tau. Nat Neurosci 1: 335-338.
  15. Law A, Grauthier S, Quirion R. 2001. Say NO to Alzheimer's disease: the putative links between nitric oxide and dementia of the Alzheimer's type. Brain Res Rev 35: 73-96. https://doi.org/10.1016/S0165-0173(00)00051-5
  16. Jang JH, Surh YJ. 2005. AP-1 mediates $\beta$-amyloid-induced iNOS expression in PC12 cells via the ERK2 and p38 MAPK signaling pathways. Biochem Biophys Res Commun 331: 1421-1428. https://doi.org/10.1016/j.bbrc.2005.04.057
  17. Yankner BA, Duffy LK, Kirschner DA. 1990. Neurotrophic and neurotoxic effects of amyloid (beta) protein: reversal by tachykinin neuropeptides. Science 250: 279-282. https://doi.org/10.1126/science.2218531
  18. Lehericy S, Hirsch EC, Cervera-Pierot P, Hersh LB, Bakchine S, Piette F, Duyckaerts C, Hauw JJ, Javoy-Agid F, Agid Y. 1993. Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer's disease. J Comp Neurol 330: 15-31. https://doi.org/10.1002/cne.903300103
  19. Nunan J, Small DH. 2000. Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 483: 6-10. https://doi.org/10.1016/S0014-5793(00)02076-7
  20. Ling Y, morgan K, Kalsheker N. 2003. Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer's disease. Int J Biochem Cell Biol 35: 1505-1535. https://doi.org/10.1016/S1357-2725(03)00133-X
  21. Fukumoto H, Cheung BS, Hyman BT, Irizarry MC. 2002. Beta-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol 59: 1381-1389. https://doi.org/10.1001/archneur.59.9.1381
  22. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. 1999. Beta secretase cleavage of Alzheimer's amyloid precusor protein by the transmembrane aspartic protease BACE. Science 286: 735-741. https://doi.org/10.1126/science.286.5440.735
  23. Hartlage-Rubsamen M, Zeitschel U, Apelt J, Gartner U, Franke H, Stahl T, Gunther A, Schliebs R, Penkowa M, Bigl V, Rossner S. 2003. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulusdependent. Glia 41: 169-179. https://doi.org/10.1002/glia.10178
  24. Jang CH, Jung MW, Mook-Jung I. 2001. Enzymes for beta amyloid generation and their therapeutic applications for Alzheimer's disease. Kor J Brain Sci Tech 1: 45-52.
  25. Robinson MJ, Cobb MH. 1997. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9: 180-186. https://doi.org/10.1016/S0955-0674(97)80061-0
  26. English JM, Cobb MH. 2002. Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 23: 40-45. https://doi.org/10.1016/S0165-6147(00)01865-4
  27. Harper SJ, LoGrasso P. 2001. Signaling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal 13: 299-310. https://doi.org/10.1016/S0898-6568(01)00148-6
  28. Swaton JE, Sellers LA, Faull RLN, Holland A. 2004. Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. Eur J Neurosci 19: 2711-2719. https://doi.org/10.1111/j.0953-816X.2004.03365.x
  29. Frasca G, Chiechio S, Vancheri C, Nicoletti F, Copani A, Angela Sortino M. 2004. Beta-amyloid-activated cell cycle in SH-SY5Y neuroblastoma cells: correlation with the MAP kinase pathway. J Mol Neurosci 22: 231-236. https://doi.org/10.1385/JMN:22:3:231
  30. Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, Catani M, Cecchetti R, Senin U, Mecocci P. 2003. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease. Neurobiol Aging 24: 915-919. https://doi.org/10.1016/S0197-4580(03)00031-9
  31. Mary S. 2002. Do dietary antioxidants prevent Alzheimer's disease? The Lancet Neurology 1: 342. https://doi.org/10.1016/S1474-4422(02)00158-8
  32. Michael H, Bernd LF, Gunter S, Klaus L, Joachim B. 1999. Anti-inflammatory substances - a new therapeutic option in Alzheimer's disease. Drug Discovery Today 4: 275-282. https://doi.org/10.1016/S1359-6446(99)01339-2
  33. Pasinetti GM, Aisen PS. 1998. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain. Neuroscience 87: 319-324. https://doi.org/10.1016/S0306-4522(98)00218-8
  34. Blois M. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  35. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer 47: 943-946.
  36. Schagger H, Jagow G. 1989. Tricine-sodium dodesyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 66:368-379.
  37. Ruperez P, Ahrazem O, Leal JA. 2002. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840-845. https://doi.org/10.1021/jf010908o
  38. Yon XJ, Li XC, Zhou CX, Fan X. 1996. Prevention of fish oil rancidity by phlorotannins from Sargassum kjellmanianum. J Appl Phycol 8: 201-203. https://doi.org/10.1007/BF02184972
  39. Park KE, Jang MS, Lim CW, Kim YK, Seo Y, Park HY. 2005. Antioxidant activity on ethanol extract from boiledwater of Hizikia fusiformis. J Korean Soc Appl Biol Chem 48: 435-439.
  40. Kim JA, Lee JM. 2004. The changes in the chemical components and antioxidant activities in Ecklonia cava according to the drying methods. J Korean Home Econom Assoc 42: 193-203.
  41. Kim ES, Choi SJ, Ryu BH, Choi JH, Oh MS, Park WJ, Choi YW, Paik DH, Ha KC, Kang DO, Cho YK, Park KT, Moon JY. 2006. Protective effects of Hemerocallis fulva extracts on amyloid $\beta$-protein-induced death in neuronal cells. J Korean Oriental Med 27: 122-133.
  42. Park JC, Choi JS, Song SH, Choi MR, Kim KY, Choi JW. 1997. Hepatoprotective effect of extracts and phenolic compound from marine algae in bromobenzene-treatead rats. Kor J Pharmacogn 28: 239-246.
  43. Kang KA, Lee KH, Chae S, Zhang R, Jung MS, Lee Y, Kim SY, Kim HS, Joo HG, Park JW, Ham YM, Lee NH, Hyun JW. 2005. Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS Lett 579: 6295-6304. https://doi.org/10.1016/j.febslet.2005.10.008
  44. Jeon SY, Bae KH, Seong YH, Song KS. 2003. Green tea catechin as a BACE1 ($\beta$-secretase) inhibitor. Bioorg Med Chem Lett 13: 3905-3908. https://doi.org/10.1016/j.bmcl.2003.09.018
  45. Kim YJ, Jung IS, Choi IS, Gil SW, Choi YJ. 2006. Studies on antioxidant activity and inhibition of nitric oxide synthesis from Codium fragile. J Life Sci 16: 788-793. https://doi.org/10.5352/JLS.2006.16.5.788
  46. Han BH, Holtzman DM. 2000. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20: 5775-5781.
  47. Harper SJ, LoGrasso P. 2001. Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal 13: 299-310. https://doi.org/10.1016/S0898-6568(01)00148-6
  48. Irving EA, Bamford M. 2002. Role of mitogen- and stressactivated kinases in ischemic injury. J Cereb Blood Flow Metab 22: 631-647.

Cited by

  1. Inhibitory effect ofPetalonia binghamiaeon neuroinflammation in LPS-stimulated microglial cells vol.50, pp.1, 2017, https://doi.org/10.4163/jnh.2017.50.1.25
  2. Effects of Colpomenia sinuosa Extract on Serum Lipid Level and Bone Formation in Ovariectomized Rats vol.45, pp.4, 2016, https://doi.org/10.3746/jkfn.2016.45.4.492
  3. Review of Recent Studies and Research Analysis for Anti-oxidant and Anti-aging Materials vol.14, pp.4, 2016, https://doi.org/10.20402/ajbc.2016.0107
  4. A Study for Natural Dyeing and Functional Property of Paper and Fabrics with Green Laver Extracts vol.23, pp.5, 2014, https://doi.org/10.5934/kjhe.2014.23.5.861
  5. Effects of Myelophycus Simplex Papenfuss Methanol Extract on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes vol.25, pp.1, 2015, https://doi.org/10.5352/JLS.2015.25.1.62
  6. Anti-Inflammatory Activity of Ethanol Extracts from Hizikia fusiformis Fermented with Lactic Acid Bacteria in LPS-Stimulated RAW264.7 Macrophages vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1450
  7. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review vol.17, pp.10, 2014, https://doi.org/10.3390/md17100590
  8. 국내 자생 갈조류의 생리활성 물질 분석 및 총 항산화능력 비교 연구 vol.52, pp.1, 2014, https://doi.org/10.9721/kjfst.2020.52.1.54
  9. Neuroprotective Effects of Phlorotannin-Rich Extract from Brown Seaweed Ecklonia cava on Neuronal PC-12 and SH-SY5Y Cells with Oxidative Stress vol.30, pp.3, 2014, https://doi.org/10.4014/jmb.1910.10068
  10. 한국에서 자생하는 갈조식물문에 관한 본초학적 연구 vol.36, pp.4, 2014, https://doi.org/10.6116/kjh.2021.36.4.9.