DOI QR코드

DOI QR Code

해수 중 엽록소 a 측정방법에 대한 실험실 간 비교연구

An Inter-Laboratory Comparison Study on Chlorophyll a Determination in Seawater

  • 문초롱 (과학기술연합대학원대학교 해양환경시스템과학부) ;
  • 강동진 (과학기술연합대학원대학교 해양환경시스템과학부) ;
  • 박미옥 (부경대학교 해양학과) ;
  • 노재훈 (한국해양과학기술원 해양생태계연구부) ;
  • 유신재 (한국해양과학기술원 해양생태계연구부) ;
  • 문정언 (한국해양과학기술원 해양위성센터) ;
  • 신경훈 (한양대학교 해양융합과학과) ;
  • 김윤숙 (포항공과대학교 환경공학부) ;
  • 최중기 (인하대학교 생명해양과학부) ;
  • 서영상 (국립수산과학원 수산해양종합정보과)
  • Moon, Cho-Rong (Marine Environmental System Science, University of Science & Technology) ;
  • Kang, Dong-Jin (Marine Environmental System Science, University of Science & Technology) ;
  • Park, Mi-Ok (Department of Oceanography, Pukyong National University) ;
  • Noh, Jae Hoon (Marine Biotechnology Research Department, Korea Institute of Ocean Science & Technology) ;
  • Yoo, In-Jae (Marine Biotechnology Research Department, Korea Institute of Ocean Science & Technology) ;
  • Moon, Jeong-Eon (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Shin, Kyung-Hoon (Department of Earth and Marine Science, Hanyang University) ;
  • Kim, Yun Sook (Ocean Science and Technology Institute, Pohang University of Science and Technology) ;
  • Choi, Joong-Ki (Department of Oceanography, Inha University) ;
  • Suh, Young Sang (Fishery and Ocean Information Division, National Fisheries Research and Development Institute)
  • 투고 : 2014.01.02
  • 심사 : 2014.01.06
  • 발행 : 2014.02.28

초록

해양식물플랑크톤 생물량 및 일차생산력을 추정하기 위한 자료로서 이용되는 해수 중 엽록소 a의 농도는 고성능 액체크로마토그래피(High Performance Liquid Chromatography, HPLC), 형광법(Fluorometry), 분광광도법(Spectrophotometry)등의 분석방법으로 측정된다. 본 연구에서는 여러 실험실에서 이러한 방법들로 분석된 엽록소 a 자료를 통용하기 위한 기초자료로서 활용하고자 우리나라 주변 해역의 현장 시료를 이용한 상호비교실험을 실시하여 엽록소 a 분석 실험실 및 분석 방법간의 차이를 비교하였다. 상호비교실험은 엽록소 a 표준색소(R0) 및 동중국해(R1)와 동해해역(R2)에서 채수된 해수 현장 시료를 이용하여 총 3회 시행되었다. 참가실험실은 각각 HPLC(6개 실험실), 형광법(4개 실험실), 분광광도법(3개 실험실)으로 시료를 분석하였다. 표준색소와 현장시료의 측정결과에서 얻은 실험실 내 정밀도는 변동계수로 평가되었으며, 표준색소(R0)에서 9% 미만, 현장시료에서는 R1: 0.8~20%(평균 6.1%), R2: 4~21%(평균 13.2%)의 정밀도를 보였다. 전체 현장시료의 모집단에서 z-test를 이용하여 이상치를 제거한 측정결과들의 중앙값을 기준 값으로 평가한 HPLC, 형광법, 분광광도법 간의 차이는 20%이내였다. 이러한 차이는 현장시료의 균질성 및 실험실 내의 정밀도를 고려한 차이(R1: 8%, R2: 15%)와 유사한 값을 보였다. 비교결과로 미루어 볼 때, 측정값들간의 차이는 분석방법의 차이보다는 실험실 간 차이가 더 크다고 볼 수 있다. 따라서 각 실험실에서 생산된 자료는 분석 방법이 다르더라도 약 20% 이내에서는 동일한 결과를 생산한다고 볼 수 있으므로 타 실험실에서 서로 다른 방법으로 분석된 엽록소 a의 자료를 활용하는 경우에는 약 20%의 차이에 대한 고려가 필요하다.

Chlorophyll a in seawater which is an indicator of phytoplankton biomass and primary production is determined by High Performance Liquid Chromatography (HPLC), Fluorometry and Spectrophotometry. In this study, various methods for chlorophyll a determination in seawater are compared using in situ seawater samples from Korean seas. Three inter-laboratory comparison campaigns were carried out using chlorophyll a standard samples (R0) and in situ seawater samples, collected from the East China Sea (R1) and the East Sea (R2). 6 laboratories by HPLC methods, 4 laboratories by fluorometry, and 3 laboratories by spectrophotometry participated. Precisions, defined as the coefficient of variation (CV) were within 9% in standard samples, 0.8~20% (average: 6.1%) in R1, 4~21% (average: 13.2%) in R2. Discrepancy in three methods was approximately 20% within the range of the sample homogeneity intended the laboratory precision (R1: 8%, R2: 15%). The discrepancy in laboratories was greater than the discrepancy in methods. The chlorophyll a concentrations can be produced within 20% discrepancy in spite of using different methods. It is recommended to consider this 20% discrepancy when using the chlorophyll a data produced by different laboratories and different methods.

키워드

참고문헌

  1. 심재형, 2003. 플랑크톤 생태학. 서울대학교출판부, 380 pp.
  2. Analytical Methods Committee, 2001. Robust Statistics: a method of coping with outliers. Technical Brief No.6. Royal Society of Chemistry 2001.
  3. Arar, E.J., Collins, G.B., 1997. Method 445.0: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory.
  4. Bowles, N.D., Paerl, H.W., Tucker, J., 1985. Effective solvents and extraction periods employed in phytoplankton carotenoid and chlorophyll determination. Can. J. Fish. Aquat. Sci., 42: 1127-1131. https://doi.org/10.1139/f85-139
  5. Charlson, R.J., Lovelock, J.E., Andreae, M.O., Warren, S.G., 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114): 655-661. https://doi.org/10.1038/326655a0
  6. Claustre, H., Hooker, S.B., Van Heukelem, L., Berthon, J.F., Barlow, R., Ras, J., Sessions, H., Targa, C., Thomas, C., van der Linde, D., Marty, J.C., 2004. An intercomparison of HPLC phytoplankton pigment methods using in situ samples: Application to remote sensing and database activities. Mar. Chem., 85: 41-61. https://doi.org/10.1016/j.marchem.2003.09.002
  7. Gibbs, C.F., 1979. Chlorophyll b interference in the fluorometric determination of chlorophyll a and 'phaeo-pigments'. Austral. J. Mar. Freshw. Res, 30(5): 597-606. https://doi.org/10.1071/MF9790597
  8. Gieskes, W.W.C., 1991. Algal pigment fingerprints: clue to taxon-specific abundance, productivity and degradation of phytoplankton in seas and oceans. In: Particle Analysis in Oceanography, edited by S. Demers, Springer-Verlag, Berlin Heidelberg, pp. 61-99.
  9. Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W., Strickland, J.D., 1965. Fluorometric determination of chlorophyll. Journal du Conseil, 30(1): 3-15. https://doi.org/10.1093/icesjms/30.1.3
  10. Hooker, S.B., Claustre, H., Ras, J., Van Heukelem, L., Berthon, J.F., Targa, C., van der Linde, D., Barlow, R., Sessions, H., 2000. The First SeaWiFS HPLC Analysis RoundRobin Experiment (Sea- HARRE-1). edited by Hooker and E.R. Firestone, NASA Tech. Memo. 2000-206892, Vol. 14, S.B. NASA Goddard Space Flight Center, Greenbelt, Maryland, 42 pp.
  11. Hooker, S.B., Esaias, W.E., 1993. An overview of the SeaWiFS project. Eos. Trans. AGU, 74: 241-246.
  12. Hooker, S.B., Van Heukelem, L., Thomas, C.S., Claustre, H., Ras, J., Schluter, L., Perl, J., Trees, C., Stuart, V., Head, E., Barlow, R., Sessions, H., Clementson, L., Fishwick, J., Llewellyn, C., Aiken, J., 2005. The Second SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2). NASA Tech. Memo. 2005-212785, NASA Goddard Space Flight Center, Greenbelt, Maryland, 112 pp.
  13. Hooker, S.B., Van Heukelem, L., Thomas, C.S., Claustre, H., Ras, J., Schluter, L., Clementson, L., Linde, D., Eker-Develi, E., Berthon, J.F., Barlow, R., Sessions, H., Ismail, H., Perl, J., 2009. The Third SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-3). NASA Tech. Memo. 2009-215849, NASA Goddard Space Flight Center, Greenbelt, Maryland, 97 pp.
  14. Hooker, S.B., Thomas, C.S., Van Heukelem, L., Schluter, L., Russ, M.E., Ras, J., Claustre, H., Clementson, L., Canuti, E., Berthon, J.F., Perl, J., Nomandeau, C., Cullen, J., Kienast, M., Pinckney, J.L., 2010. The Fourth SeaWiFS HPLC Analysis RoundRobin Experiment (SeaHARRE-4). NASA Tech. Memo. 2010-215857, NASA Goddard Space Flight Center, Greenbelt, Maryland, 74 pp.
  15. Hooker, S.B., Clementson, L., Thomas, C.S., L., Schluter, Allerup, M., J. Ras, J., Claustre, H., Nomandeau, C., Cullen, J., Kienast, Kozlowski, W., Vernet, M., Chakraborty, S., Lohrenz, S., Tuel, M., Redalje, D., Cartaxana, P., Mendes, C.R., Brotas, V., Matondkar, P., Parab, S.G.S.G., Neeley, A., Egeland, E.S., 2012. The Fifth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-5). NASA Technical Memorandum 2012-217503, NASA Goddard Space Flight Center, Greenbelt, Maryland, 102 pp.
  16. ISO, 2007. ISO/IEC GUIDE 99: International vocabulary of metrology- basic and general concepts and associated terms (VIM). International Organization for standardization, Geneva, Switzerland.
  17. ISO, 2005. ISO 13528: Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons. International Organization for standardization, Geneva, Switzerland.
  18. Jeffrey, S.W., Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, $c_1$ and $c_2$ in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz, 167(19):1-194. https://doi.org/10.1016/S0015-3796(17)30747-3
  19. Jeffrey, S.W., Mantoura, R.F.C., 1997. Development of pigment methods for oceanography: SCOR-supported working groups and objectives. In: Phytoplankton pigments in oceanography, edited by Jeffrey, S.W., Matoura, R.F.C., Wright, S.W., UNESCO, Paris, pp. 19-36.
  20. Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W., 1997. Phytoplankton pigments in oceanography. UNESCO, Paris, 661 pp.
  21. Lehman, P.W., 1981. Comparison of chlorophyll a and carotenoid pigments as predictors of phytoplankton biomass. Mar. Biol., 65(3):237-244. https://doi.org/10.1007/BF00397117
  22. Lorenzen, C.J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr., 12(2): 343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  23. Lorenzen, C.J., Jeffrey S.W, 1980. Determination of chlorophyll in seawater. UNESCO tech. pap. mar, Paris. sci 35.1
  24. Moon, J.E., Park, Y.J., Ryu, J.H., Choi, J.K., Ahn, J.H., Min, J.E., Son, Y.B., Lee, S.J., Han, H.J., Ahn, Y.H., 2012. Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011. Ocean Sci. J., 47(3): 261−277. https://doi.org/10.1007/s12601-012-0027-1
  25. Mueller, J.L., Bidigare, R.R., Trees, C., Balch, W.M., Dore, J., Drapeau, D.T., Karl, D., Van Heukelem, L., Perl, J., 2003. Ocean optics protocols for satellite ocean color sensor validation, revision 5, volume V: Biogeochemical and bio-optical measurements and data analysis protocols. edited by Mueller, J.L., Fargion, G.S., McClain, C.R., NASA Tech. Memo. 2003-211621, Rev. 5, vol. V. Greenbelt, NASA Goddard Space Flight Center, 36 pp.
  26. O'Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M., McClain, C., 1998. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103: 24937-24953. https://doi.org/10.1029/98JC02160
  27. Riemann, Bo, 1978. Carotenoid interference in the spectrophotometric determination of chlorophyll degradation products from natural populations of phytoplankton. Limnol. Oceanogr., 23(5): 1059-1066. https://doi.org/10.4319/lo.1978.23.5.1059
  28. Ryu, J.H., Han, H.D., Cho, S., Park, Y.J., Ahn, Y.H., 2012. Overview of Geostationary Ocean Color Imager (GOCI) and GOCI Data Processing System (GDPS). Ocean Sci.J., 47(3): 223-233. https://doi.org/10.1007/s12601-012-0024-4
  29. Van Heukelem, L., Thomas, C.S., Glibert, P.M., 2002. Sources of Variability in Chlorophyll Analysis by Fluorometry and High Performance Liquid Chromatography in a SIMBIOS Inter-Calibration Exercise. edited by Fargion, G.S., McClain, C. R., NASA Tech. Memo. 2002-02338-0, Greenbelt, NASA Goddard Space Flight Center. 53 pp.
  30. Welschmeyer, N.A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39(8): 1985-1992. https://doi.org/10.4319/lo.1994.39.8.1985
  31. Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., 1997. Evaluation of methods and solvents for pigment extraction. In: Phytoplankton pigments in oceanography, edited by Jeffrey, S.W., Matoura, R.F.C., Wright, S.W., UNESCO, Paris, pp. 261-282.
  32. Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., Llewellyn, C.A., Bjornland, T., Repeta, D., Welschmeyer, N., 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser., 77: 183-196. https://doi.org/10.3354/meps077183
  33. Yentsch, C.S., Menzel, D.W., 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res., 10: 221-231.
  34. Zapata, M., Rodriguez, F., Garrido, J.L., 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridinecontaining mobile phases. Mar. Ecol. Prog. Ser., 195: 29-45. https://doi.org/10.3354/meps195029

피인용 문헌

  1. Evaluation of chlorophyll retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East Asian region vol.184, 2016, https://doi.org/10.1016/j.rse.2016.07.031