Chitosan Silver Nano Composites (CAgNCs) as Antibacterial Agent Against Fish Pathogenic Edwardsiella tarda

어류 병원성 균주 Edwardsiella tarda에 대한 키토산-실버 나노입자의 항박테리아 효과

  • Dananjaya, S.H.S. (College of Veterinary Medicine (BK21 Plus Program) and Research Institute of Veterinary Medicine, Chungnam National University) ;
  • Godahewa, G.I. (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University) ;
  • Lee, Youngdeuk (Korea Institute of Ocean Science Technology) ;
  • Cho, Jongki (College of Veterinary Medicine (BK21 Plus Program) and Research Institute of Veterinary Medicine, Chungnam National University) ;
  • Lee, Jehee (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University) ;
  • De Zoysa, Mahanama (College of Veterinary Medicine (BK21 Plus Program) and Research Institute of Veterinary Medicine, Chungnam National University)
  • ;
  • ;
  • 이영득 (한국해양과학기술원) ;
  • 조종기 (충남대학교 수의과대학 &기후변화질병 제어 수의인력양성사업팀) ;
  • 이제희 (제주대학교 해양과학대학 해양의생명과학부) ;
  • Accepted : 2014.12.17
  • Published : 2014.12.31

Abstract

Recently nano particles have proven for wide array of bioactive properties. In the present study, antibacterial properties of chitosan silver nano composites (CAgNCs) were investigated against fish pathogenic Edwardsiella tarda. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CAgNCs against E. tarda were $25{\mu}g/mL$ and $125{\mu}g/mL$, respectively. The field emission scanning electron microscope (FE-SEM) image of CAgNCs treated E. tarda showed the strongly damaged bacteria cells than non-treated bacteria. Furthermore, treatment of CAgNCs induced the level of intracellular reactive oxygen species (ROS) in E. tarda cells in concentration and time dependent manner suggesting that it may generate oxidative stress leading to bacterial cell death. In addition, MTT assay results showed that the lowest cell viability at $100{\mu}g/mL$ of CAgNCs treated E. tarda. Overall results of this study suggest that CAgNCs is a potential antibacterial agent to control pathogenic bacteria.

최근들어 나노입자들을 활용한 다양한 연구들을 통해 생리활성 능력이 입증되고 있다. 본 연구에서는 어류 병원성 균주인 Edwardsiella tarda에 대해 키토산-실버 나노입자(CAgNCs)의 항박테리아 활성을 측정하였다. CAgNCs의 E. tarda에 대한 최소성장억제농도 및 최소살균농도를 확인한 결과 각각 $25{\mu}g/mL$$125{\mu}g/mL$임을 확인할 수 있었으며, 주사전자현미경으로 관찰결과 CAgNCs 처리구가 대조구에 비해 E. tarda의 세포벽 손상을 강하게 일으킨 것을 확인할 수 있었다. 더 나아가, CAgNCs는 E. tarda의 세포내 활성산소를 농도와 시간 의존적으로 증가시킴을 확인하였고, 이는 CAgNCs가 E. trada의 산화스트레스를 발생시켜 세포의 사멸을 유발시킨 것으로 예측된다. 또한, MTT assay 결과 CAgNCs를 E. tarda에 $100{\mu}g/mL$의 농도로 처리했을 때 최저 세포 생존능을 나타내었다. 이러한 결과들은 CAgNCs가 병원성 미생물 조절을 위한 항미생물제로서의 응용 가능성이 크다는 것을 보여주고 있다.

Keywords

References

  1. Akmaz S, Adjguzel ED, Yasar M, Erguven O. The effect of Ag content of the chitosan-silver nanoparticle composite material on the structure and antibacterial activity. Adv MaterSci Eng 2013; ID 690918,6 pages.
  2. Ali MDH, Chowdhury MDFS, Ashrafuzzaman, Md. Chowdhury, MDAN, UlHaque, RMD, Zinnah KMA, Rahman M. Identification, pathogenicity, antibiotic and herbal sensitivity of Edwardsiella tarda causing fish disease in Bangladesh. Current Res Microbiol Biotech 2014; 2: 292-297.
  3. Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G.. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 2000; 16: 2789-2796. https://doi.org/10.1021/la991013x
  4. Cai L, Wu CD. (1996). Compounds from Syzygium aromaticum processing growth inhibitory activity against oral pathogens. J Nat Prod 59: 987-990. https://doi.org/10.1021/np960451q
  5. Deven S, Staykov Y, Moutafchieva R, Beev G. Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res 2009; 1: 1-29.
  6. Doughari JH, Elmahmood AM, Manzara S. Studies on the antibacterial activity of root extracts of Carica papaya L. African J Microbiol Res 2007; 37-41.
  7. Ingo S, Bernd W. Natural antibiotic susceptibilities of Edwardsiella tarda, E. ictaluri, and E. hoshinae. Antimicrob Agents Chemother 2001; 45: 2245-2255. https://doi.org/10.1128/AAC.45.8.2245-2255.2001
  8. Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 2002; 92:37-42. https://doi.org/10.1016/S0162-0134(02)00489-0
  9. Kim SH, Lee HS, Ryu SD, Choi, SJ, Lee DS. Antibacterial activity of silver nanoparticles Against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 2011; 39: 77-85.
  10. Meena MR, Sethi V. (1994). Antimicrobial activity of essential oils from spices. J Food Sci Tech 1994; 31: 68-70.
  11. Mohanty BR, Sahoo PK. Edwardsiellosis in fish: a brief review. J Biosci 2007; 32: 1331-1344. https://doi.org/10.1007/s12038-007-0143-8
  12. Olasumbo L, Akinbowale PH, Grant P, Barton D Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. Int J Antimicrob Age 2007; 30: 177-182. https://doi.org/10.1016/j.ijantimicag.2007.03.012
  13. Park SB, Aoki T, Jung TS. Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res 2012; 43:67. https://doi.org/10.1186/1297-9716-43-67
  14. Qi L, Xu Z, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd Res 2004; 339: 2693-700. https://doi.org/10.1016/j.carres.2004.09.007
  15. Regiel A, Irusta S, Kyzio A, Arruebo M, Santamaria J. Preparation andcharacterization of chitosan-silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 2013; 24: 015101(13pp). https://doi.org/10.1088/0957-4484/24/1/015101
  16. Sanpui P, Murugadoss A, Prasad PVD, Ghosh SS, Chattopadhyay A. The antibacterial properties of a novel chitosan- Ag-nanoparticle composite. International J Food Microbiol 2008; 124: 142-146. https://doi.org/10.1016/j.ijfoodmicro.2008.03.004
  17. Sondi I, Salopel SB. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004; 275: 177-182. https://doi.org/10.1016/j.jcis.2004.02.012
  18. Song J, Kang H, Lee C, Hwang SH, Jang J. Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity. App Mater Interfa 2012; 4: 460-465. https://doi.org/10.1021/am201563t
  19. Su HL, Chou CC, Hung DJ, Lin, SH, Pao IC. Lin JH, Huang FL, Dong RX, Lin JJ. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 2009; 30: 5979-5987. https://doi.org/10.1016/j.biomaterials.2009.07.030
  20. Velmurugan P, Iydroose M, Lee SM, Cho M, Park JH, Balachandar V, Oh BT. Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens. Indian J Microbiol 2014; 54: 196-202. https://doi.org/10.1007/s12088-013-0437-5
  21. Wang Q, Yang M, Xiao J, Wu H, Wang X, Lv Y, Xu L, Zheng H, Wang S, Zhao G, Liu Q, Zhang Y. Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS ONE 2009; 4: e7646. https://doi.org/10.1371/journal.pone.0007646
  22. You C, Han C, Wang X, Zheng Y, Li Q,Hu X, Sun H. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 2012; 39: 9193-9201. https://doi.org/10.1007/s11033-012-1792-8