Experimental
General Procedure. An amber 2-dram vial equipped with a magnetic stir bar, containing catalyst I (98 mg, 0.30 mmol), o-N-(3-indoleacetyl)aminocinnamaldehyde 1a (457 mg, 1.5 mmol) and 4-nitrobenzoic acid (50 mg, 0.30 mmol) was charged with DMF (8 mL) at 0 ℃. The solution was stirred for 5 min before the addition of dimethyl malonate 10a (257 L, 2.3 mmol). The resulting mixture was stirred at constant temperature until complete consumption of o-N-(3-indoleacetyl)aminocinnamaldehyde 1a was observed as determined by TLC. The resulting mixture was directly purified by silica gel chromatography (50% EtOAc/hexanes) to afford the desired compound 2a as a colorless gum (584 mg, 90% yield, 96% ee). To a solution of tetrahydroquinolin- 2-ol 2a (96 mg, 0.22 mmol) in CHCl3 (1.2 mL) at ˗78 ℃ was added HCl (0.44 mL, 1.8 mmol, 4 M solution in 1,4-dioxane). After 20 minutes, the mixture was allowed to warm up to room temperature and stirred for 2 h. The reaction was quenched with sat. NaHCO3 solution and extracted with CH2Cl2. The combined extract was washed with brine, dried over sodium sulfate, concentrated, and purified by flash column chromatography (40% EtOAc/Hexane) to afford the benzindoloquinolizidine 3a as a colorless gum (52 mg, 56% yield). The enantioselectivity was determined by HPLC analysis of the tetrahydroquinolinone product, which was prepared by oxidation (PCC, CH2Cl2) of 2a, using a Chiralcel AD-H column and AD-H guard column (20% EtOH:hexanes, 1.0 mL/min flow, λ = 220 nm); minor- isomer tr = 25.0 min and major- isomer tr = 37.6 min.
Dimethyl 2-((14R)-6,7,12,12b,13,14-Hexahydro-6-oxoindolo[2,3-a]quinolizine-14-yl)malonate (3a): ˗33.4 (c 0.24, CHCl3); 1H NMR (400 MHz, CDCl3) δ 9.41 (dd, J = 0.8, 8.4 Hz, 1H), 8.15 (s, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.01- 7.44 (m, 6H), 4.74 (dd, J = 2.8, 12.8 Hz, 1H), 3.75 (s, 3H), 3.60-3.72 (m, 2H), 3.57 (s, 3H), 3.43 (d, J = 19.6 Hz, 1H), 2.54 (d, J = 16.4 Hz, 1H), 1.51 (td, J = 4.4, 12.8 Hz, 1H), 1.17 (dt, J = 2.8,14.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 172.1, 171.2, 168.0, 167.6, 155.2, 138.0, 136.2, 129.6, 129.3, 128.8, 127.0, 124.4, 123.7, 122.6, 122.1, 118.5, 57.7, 55.3, 52.9, 52.6, 38.6, 36.1, 25.6; HRMS (ESI): Calcd for C24H22N2O5Na (M+Na)+: 441.1426. Found: 441.1428.
Diethyl 2-((14R)-6,7,12,12b,13,14-Hexahydro-6-oxoindolo[2,3-a]quinolizine-14-yl)malonate (3b): ˗55.3 (c 0.26, CHCl3); 1H NMR (400 MHz, CDCl3) δ 9.01 (d, J = 8.4 Hz, 1H), 8.14 (s, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.02-7.44 (m, 6H), 4.77 (dd, J = 2.8, 12.8 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 4.05 (q, J = 6.8 Hz, 2H), 3.65-3.72 (m, 1H), 3.59 (d, J = 10.0 Hz, 1H), 3.43 (d, J = 16.4 Hz, 1H), 2.54 (d, J = 16.4 Hz, 1H), 1.50 (td, J = 4.4, 14.0 Hz, 1H), 1.22-1.30 (m, 4H), 1.11 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 172.2, 171.2, 167.6, 167.3, 155.2, 138.0, 136.2, 129.8, 129.2, 128.7, 127.0, 124.5, 123.6, 122.6, 122.1, 118.4, 62.0, 61.7, 58.0, 55.4, 38.6, 36.0, 25.7, 14.1, 13.8; HRMS (ESI): Calcd for C26H26N2O5Na (M+Na)+: 469.1739. Found: 469.1738.
Diisopropyl 2-((14R)-6,7,12,12b,13,14-Hexahydro-6-oxo-indolo[2,3-a]quinolizine-14-yl)malonate (3c): ˗43.8 (c 0.58, CHCl3); 1H NMR (400 MHz, CDCl3) δ 9.00 (d, J = 8.4 Hz, 1H), 8.14 (s, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.01-7.43 (m, 6H), 5.04 (septet, J = 6.4 Hz, 1H), 4.92 (septet, J = 6.4 Hz, 1H), 4.80 (dd, J = 2.8, 12.8 Hz, 1H), 3.64-3.71 (m, 1H), 3.53 (d, J = 10.0 Hz, 1H), 3.42 (d, J = 16.4 Hz, 1H), 2.52 (d, J = 16.4 Hz, 1H), 1.48 (td, J = 4.8, 14.0 Hz, 1H), 1.22-1.28 (m, 7H), 1.17 (d, J = 6.0 Hz, 3H), 1.03 (d, J = 6.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 172.4, 171.4, 167.3, 167.0, 142.2, 138.2, 136.3, 130.1, 129.3, 128.7, 127.1, 124.8, 123.8, 122.7, 118.5, 69.9, 69.6, 61.0, 58.5, 55.6, 38.8, 35.8, 21.8, 21.7, 21.6, 21.5; HRMS (ESI): Calcd for C28H30N2O5Na (M+Na)+: 497.2052. Found: 497.2053.
Dibenzyl 2-((14R)-6,7,12,12b,13,14-Hexahydro-6-oxoindolo[2,3-a]quinolizine-14-yl)malonate (3d): ˗21.7 (c 0.26, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.97 (d, J = 8.4 Hz, 1H), 7.85 (s, 1H), 7.67 (d, J = 7.6 Hz, 1H), 6.85-7.40 (m, 16H), 5.11 (s, 2H), 4.95 (dd, J = 12.4, 23.6 Hz, 2H), 4.57 (dd, J = 2.8, 12.8 Hz, 1H), 3.67-3.74 (m, 2H), 3.23 (d, J = 16.4 Hz, 1H), 2.43 (d, J = 16.4 Hz, 1H), 1.44 (td, J = 4.4, 14.4 Hz, 1H), 1.16 (ddd, J = 2.0, 3.2, 14.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 172.6, 172.2, 171.4, 167.5, 148.6, 147.2, 138.2, 128.9, 128.8, 128.7, 128.6, 128.5, 124.3, 122.6, 121.7, 118.5, 116.4, 67.8, 67.7, 60.8, 58.0, 38.7, 36.1, 25.7; HRMS (ESI): Calcd for C36H30N2O5Na (M+Na)+: 593.2052. Found: 593.2055.
Dimethyl 2-((14R)-2-Chloro-6,7,12,12b,13,14-hexahydro-6-oxo-indolo[2,3-a]quinolizine-14-yl)malonate (3e): 13.1 (c 0.23, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.97 (d, J = 8.8 Hz, 1H), 8.12 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.17- 7.43 (m, 5H), 4.70 (dd, J = 2.8, 12.8 Hz, 1H), 3.73 (s, 3H), 3.64 (s, 3H), 3.54-3.64 (m, 2H), 3.32 (d, J = 16.8 Hz, 1H), 2.53 (d, J = 16.8 Hz, 1H), 1.45 (td, J = 4.4, 13.6 Hz, 1H), 1.15 (dt, J = 2.4, 14.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 167.9, 167.5, 154.7, 142.2, 142.1, 141.9, 141.6, 141.4, 140.0, 139.0, 134.8, 129.4, 128.9, 127.2, 126.2, 119.9, 57.6, 55.3, 52.9, 37.1, 29.8, 25.5; HRMS (ESI): Calcd for C24H21ClN2O5Na (M+Na)+: 475.1037. Found: 475.1038.
Dimethyl 2-((14R)-2-Bromo-6,7,12,12b,13,14-hexahydro-6-oxo-indolo[2,3-a]quinolizine-14-yl)malonate (3f): 44.3 (c 0.60, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.91 (d, J = 8.8 Hz, 1H), 8.11 (s, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.20- 7.45 (m, 5H), 4.69 (dd, J = 2.8, 12.8 Hz, 1H), 3.73 (s, 3H), 3.64 (s, 3H), 3.56-3.62 (m, 2H), 3.41 (d, J = 16.4 Hz, 1H), 2.52 (d, J = 16.8 Hz, 1H), 1.43 (td, J = 4.0, 14.0 Hz, 1H), 1.15 (dt, J = 2.4, 14.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 171.4, 167.9, 167.45, 148.6, 135.8, 135.3, 132.4, 131.8, 129.5, 127.2, 126.6, 122.5, 122.4, 120.2, 116.5, 57.6, 55.3, 52.9, 38.6, 35.9, 25.5; HRMS (ESI): Calcd for C24H21BrN2O5Na (M+Na)+: 519.0532. Found: 519.0530.
References
- (a) Nicolaou, K. C.; Snyder, S. A. Classics in Total Synthesis II; Wiley-VCH: Weinheim, 2003.
- (b) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; Wiley-VCH: Weinheim, 1996.
- (a) MacMillan, D. W. C.; Walji, A. M. Synthesis 2007, 1477.
- (b) Chapman, C. J.; Frost, C. G. Synthesis 2007, 1.
- (c) Pellisier, H. Tetrahedron 2006, 62, 2143. https://doi.org/10.1016/j.tet.2005.10.041
- (d) Pellisier, H. Tetrahedron 2006, 62, 1619. https://doi.org/10.1016/j.tet.2005.10.040
- (e) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. C. Angew. Chem. Int. Ed. Engl. 2006, 45, 7134. https://doi.org/10.1002/anie.200601872
- (f) Guo, H. C.; Ma, J. A. Angew. Chem., Int. Ed. 2006, 45, 354. https://doi.org/10.1002/anie.200500195
- (g) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
- (a) Pellissier, H. Recent Developments in Asymmetric Organocatalysis; RSC: Cambridge, 2010.
- (b) List, B., Ed. Asymmetric Organocatalysis; Topics in Current Chemistry, Vol. 291; Springer: Berlin/Heidelberg, 2010.
- (c) Dalo, P. I. Enantioselective Organocatalysis; Wiley- VCH: Weinheim, 2007.
- (d) Berkessel, A.; Groger, H. Asymmetric Organocatalysis; Wiley-VCH: Weinheim, 2005.
- (e) Bertelsen, S.; Jorgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178. https://doi.org/10.1039/b903816g
- (f) Dondoni, A.; Massi, A. Angew. Chem. Int. Ed. Engl. 2008, 47, 4638. https://doi.org/10.1002/anie.200704684
- (g) Pellisier, H. Tetrahedron 2007, 63, 9267. https://doi.org/10.1016/j.tet.2007.06.024
- (a) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237. https://doi.org/10.1002/adsc.201100714
- (b) Albrecht, .; Jiang, H.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2011, 50, 8492. https://doi.org/10.1002/anie.201102522
- (c) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167. https://doi.org/10.1038/nchem.539
- (d) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem. Int. Ed. 2008, 47, 6138. https://doi.org/10.1002/anie.200705523
- (e) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037. https://doi.org/10.1039/b800245m
- (f) Enders, D.; Grondal, C.; Huttl, M. R. M. Angew. Chem. Int. Ed. 2007, 46, 1570. https://doi.org/10.1002/anie.200603129
- (a) Seo, S. W.; Kim, S.-G. Tetrahedron Lett. 2012, 53, 2809. https://doi.org/10.1016/j.tetlet.2012.03.102
- (b) Gwon, S. H.; Kim, S.-G. Tetrahedron: Asymmetry 2012, 23, 1251. https://doi.org/10.1016/j.tetasy.2012.08.004
- (c) Gwon, S. H.; Kim, S.-G. Bull. Korean Chem. Soc. 2012, 33, 2781. https://doi.org/10.5012/bkcs.2012.33.8.2781
- (d) Choi, K.-S.; Kim, S.-G. Eur. J. Org. Chem. 2012, 1119.
- (e) Lee, Y.; Seo, S. W.; Kim, S.-G. Adv. Synth. Catal. 2011, 353,2671. https://doi.org/10.1002/adsc.201100324
- (f) Do, J.; Kim, S.-G. Tetrahedron Lett. 2011, 52, 2353. https://doi.org/10.1016/j.tetlet.2011.02.073
- (g) Gwon, S. H.; Kim, S.; Kim, S.-G.; Bull. Korean Chem. Soc. 2011, 32, 4163. https://doi.org/10.5012/bkcs.2011.32.12.4163
- (h) Lee, Y.; Kim, S.-G. Bull. Korean Chem. Soc. 2011, 32, 311. https://doi.org/10.5012/bkcs.2011.32.1.311
- (i) Choi, K.-S.; Kim, S.-G. Synthesis 2010, 3999.
- (j) Choi, K.-S.; Kim, S.-G. Tetrahedron Lett. 2010, 51, 5203. https://doi.org/10.1016/j.tetlet.2010.07.138
- Heo, S.; Kim, S.; Kim, S.-G. Tetrahedron Lett. 2013, 54, 4978. https://doi.org/10.1016/j.tetlet.2013.07.031
- (a) Michael, J. P. Nat. Prod. Rep. 2008, 139.
- (b) The Alkaloids: Chemistry and Biology; Cordell, G. A., Ed.; Academic Press: New York, 1988; Vol 50.
- (c) Szantay, C.; Honty, K. In The Chemistry of Heterocyclic Compounds; Saxton, J. E., Ed.; Wiley: New York, 1994; Vol. 25, pp 161-216
- (d) Baxter, E.W.; Marino, P. S. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Springer: New York, 1992; Vol. 8, pp 197-319.
- (a) Jiang, J.; Qing, J.; Gong, L. Z. Chem. Eur. J. 2009, 15, 7031. https://doi.org/10.1002/chem.200900814
- (b) Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 10796. https://doi.org/10.1021/ja9024885
- (c) Jana, C. K.; Studer, A. Chem. Eur. J. 2008, 14, 6326. https://doi.org/10.1002/chem.200800903
- (d) Mergott, D. J.; Zuend, S. J.; Jacobsen, E. N. Org. Lett. 2008, 10, 745 https://doi.org/10.1021/ol702781q
- (e) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. https://doi.org/10.1021/ja076179w
- (f) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2006, 128, 9646. https://doi.org/10.1021/ja0636791
- (a) Hong, B.-C.; Liao, W.-K.; Dange, N. S.; Liao, J.-H. Org. Lett. 2013, 15, 468. https://doi.org/10.1021/ol3032329
- (b) Lin, S.; Deiana, L.; Tseggai, A.; Cordova, A. Eur. J. Org. Chem. 2012, 398.
- (c) Wu, X.; Dai, X.; Fang, H.; Nie, L.; Chen, J.; Cao, W.; Zhao, G. Chem. Eur. J. 2011, 17, 10510. https://doi.org/10.1002/chem.201101468
- (d) Dai, X.; Wu, X.; Fang, H.; Nie, L.; Chen, J.; Deng, H.; Cao, W.; Zhao, G. Tetrahedron 2011, 67, 3034. https://doi.org/10.1016/j.tet.2011.03.007
- (e) Sun, X.; Ma, D. Chem. Asian J. 2011, 2158.
- (f) Wu, X. Y.; Dai, X. Y.; Nie, L. L.; Fang, H. H.; Chen, J.; Ren, Z. J.; Cao, W. G.; Zhao, G. Chem. Commun. 2010, 2733.
- Mielgo, A.; Palomo, C. Chem. Asian J. 2008, 3, 922. https://doi.org/10.1002/asia.200700417
- (a) Cordova, A. Catalytic Asymmetric Conjugate Reactions; Wiley- VCH: Weinheim, 2010.
- (b) Vicario, J. L.; Badia, D.; Carrillo, L.; Reyes, E. Organocatalytic Enantioselective Conjugate Addition Reactions; RSC: Cambridge, 2010.
- (c) Alma i, D.; Alonso, D. A.; Najera, C. Tetrahedron: Asymmetry 2007, 18, 299. https://doi.org/10.1016/j.tetasy.2007.01.023
- (d) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
- (a) Fleischer, I.; Pfaltz, A. Chem. Eur. J. 2010, 16, 95. https://doi.org/10.1002/chem.200902449
- (b) Maltsev, O. V.; Kucherenko, A. S.; Zlotin, S. G. Eur. J. Org. Chem. 2009, 5134.
- (c) Wang, Y.; Li, P.; Liang, X.; Ye, J. Adv. Synth. Catal. 2008, 350, 1383. https://doi.org/10.1002/adsc.200800070
- (d) Palomo, C.; Landa, A.; Mielgo, A.; Oiarbide, M.; Puente, A.; Vera, S. Angew. Chem. Int. Ed. Engl. 2007, 46, 8431. https://doi.org/10.1002/anie.200703261
- (a) Stockigt, J.; Antonchick, A. P.; Wu, F.; Waldmann, H. Angew. Chem., Int. Ed. 2011, 50, 8538. https://doi.org/10.1002/anie.201008071
- (b) Larghi, E. L.; Kaufman, T. S. Eur. J. Org. Chem. 2011, 5195.
- (c) Royer, J.; Bonin, M.; Micouin, L. Chem. Rev. 2004, 104, 2311. https://doi.org/10.1021/cr020083x
- (d) Maryanoff, B. E.; Zhang, H.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev. 2004, 104, 1431. https://doi.org/10.1021/cr0306182
Cited by
- -Promoted Cascade Michael/Aza-Cyclization Reactions vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10049
- ChemInform Abstract: Asymmetric Construction of Benzindoloquinolizidine: Application of an Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction. vol.45, pp.37, 2014, https://doi.org/10.1002/chin.201437171