DOI QR코드

DOI QR Code

Asymmetric Construction of Benzindoloquinolizidine: Application of An Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction

  • Kim, Cheolwoong (Department of Chemistry, College of Natural Science, Kyonggi University) ;
  • Seo, Seung Woo (Department of Chemistry, College of Natural Science, Kyonggi University) ;
  • Lee, Yona (Department of Chemistry, College of Natural Science, Kyonggi University) ;
  • Kim, Sung-Gon (Department of Chemistry, College of Natural Science, Kyonggi University)
  • Received : 2013.08.05
  • Accepted : 2013.11.09
  • Published : 2014.02.20

Abstract

Keywords

Experimental

General Procedure. An amber 2-dram vial equipped with a magnetic stir bar, containing catalyst I (98 mg, 0.30 mmol), o-N-(3-indoleacetyl)aminocinnamaldehyde 1a (457 mg, 1.5 mmol) and 4-nitrobenzoic acid (50 mg, 0.30 mmol) was charged with DMF (8 mL) at 0 ℃. The solution was stirred for 5 min before the addition of dimethyl malonate 10a (257 L, 2.3 mmol). The resulting mixture was stirred at constant temperature until complete consumption of o-N-(3-indoleacetyl)aminocinnamaldehyde 1a was observed as determined by TLC. The resulting mixture was directly purified by silica gel chromatography (50% EtOAc/hexanes) to afford the desired compound 2a as a colorless gum (584 mg, 90% yield, 96% ee). To a solution of tetrahydroquinolin- 2-ol 2a (96 mg, 0.22 mmol) in CHCl3 (1.2 mL) at ˗78 ℃ was added HCl (0.44 mL, 1.8 mmol, 4 M solution in 1,4-dioxane). After 20 minutes, the mixture was allowed to warm up to room temperature and stirred for 2 h. The reaction was quenched with sat. NaHCO3 solution and extracted with CH2Cl2. The combined extract was washed with brine, dried over sodium sulfate, concentrated, and purified by flash column chromatography (40% EtOAc/Hexane) to afford the benzindoloquinolizidine 3a as a colorless gum (52 mg, 56% yield). The enantioselectivity was determined by HPLC analysis of the tetrahydroquinolinone product, which was prepared by oxidation (PCC, CH2Cl2) of 2a, using a Chiralcel AD-H column and AD-H guard column (20% EtOH:hexanes, 1.0 mL/min flow, λ = 220 nm); minor- isomer tr = 25.0 min and major- isomer tr = 37.6 min.

Dimethyl 2-((14R)-6,7,12,12b,13,14-Hexahydro-6-oxoindolo[2,3-a]quinolizine-14-yl)malonate (3a): ˗33.4 (c 0.24, CHCl3); 1H NMR (400 MHz, CDCl3) δ 9.41 (dd, J = 0.8, 8.4 Hz, 1H), 8.15 (s, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.01- 7.44 (m, 6H), 4.74 (dd, J = 2.8, 12.8 Hz, 1H), 3.75 (s, 3H), 3.60-3.72 (m, 2H), 3.57 (s, 3H), 3.43 (d, J = 19.6 Hz, 1H), 2.54 (d, J = 16.4 Hz, 1H), 1.51 (td, J = 4.4, 12.8 Hz, 1H), 1.17 (dt, J = 2.8,14.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 172.1, 171.2, 168.0, 167.6, 155.2, 138.0, 136.2, 129.6, 129.3, 128.8, 127.0, 124.4, 123.7, 122.6, 122.1, 118.5, 57.7, 55.3, 52.9, 52.6, 38.6, 36.1, 25.6; HRMS (ESI): Calcd for C24H22N2O5Na (M+Na)+: 441.1426. Found: 441.1428.

Diethyl 2-((14R)-6,7,12,12b,13,14-Hexahydro-6-oxoindolo[2,3-a]quinolizine-14-yl)malonate (3b): ˗55.3 (c 0.26, CHCl3); 1H NMR (400 MHz, CDCl3) δ 9.01 (d, J = 8.4 Hz, 1H), 8.14 (s, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.02-7.44 (m, 6H), 4.77 (dd, J = 2.8, 12.8 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 4.05 (q, J = 6.8 Hz, 2H), 3.65-3.72 (m, 1H), 3.59 (d, J = 10.0 Hz, 1H), 3.43 (d, J = 16.4 Hz, 1H), 2.54 (d, J = 16.4 Hz, 1H), 1.50 (td, J = 4.4, 14.0 Hz, 1H), 1.22-1.30 (m, 4H), 1.11 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 172.2, 171.2, 167.6, 167.3, 155.2, 138.0, 136.2, 129.8, 129.2, 128.7, 127.0, 124.5, 123.6, 122.6, 122.1, 118.4, 62.0, 61.7, 58.0, 55.4, 38.6, 36.0, 25.7, 14.1, 13.8; HRMS (ESI): Calcd for C26H26N2O5Na (M+Na)+: 469.1739. Found: 469.1738.

Diisopropyl 2-((14R)-6,7,12,12b,13,14-Hexahydro-6-oxo-indolo[2,3-a]quinolizine-14-yl)malonate (3c): ˗43.8 (c 0.58, CHCl3); 1H NMR (400 MHz, CDCl3) δ 9.00 (d, J = 8.4 Hz, 1H), 8.14 (s, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.01-7.43 (m, 6H), 5.04 (septet, J = 6.4 Hz, 1H), 4.92 (septet, J = 6.4 Hz, 1H), 4.80 (dd, J = 2.8, 12.8 Hz, 1H), 3.64-3.71 (m, 1H), 3.53 (d, J = 10.0 Hz, 1H), 3.42 (d, J = 16.4 Hz, 1H), 2.52 (d, J = 16.4 Hz, 1H), 1.48 (td, J = 4.8, 14.0 Hz, 1H), 1.22-1.28 (m, 7H), 1.17 (d, J = 6.0 Hz, 3H), 1.03 (d, J = 6.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 172.4, 171.4, 167.3, 167.0, 142.2, 138.2, 136.3, 130.1, 129.3, 128.7, 127.1, 124.8, 123.8, 122.7, 118.5, 69.9, 69.6, 61.0, 58.5, 55.6, 38.8, 35.8, 21.8, 21.7, 21.6, 21.5; HRMS (ESI): Calcd for C28H30N2O5Na (M+Na)+: 497.2052. Found: 497.2053.

Dibenzyl 2-((14R)-6,7,12,12b,13,14-Hexahydro-6-oxoindolo[2,3-a]quinolizine-14-yl)malonate (3d): ˗21.7 (c 0.26, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.97 (d, J = 8.4 Hz, 1H), 7.85 (s, 1H), 7.67 (d, J = 7.6 Hz, 1H), 6.85-7.40 (m, 16H), 5.11 (s, 2H), 4.95 (dd, J = 12.4, 23.6 Hz, 2H), 4.57 (dd, J = 2.8, 12.8 Hz, 1H), 3.67-3.74 (m, 2H), 3.23 (d, J = 16.4 Hz, 1H), 2.43 (d, J = 16.4 Hz, 1H), 1.44 (td, J = 4.4, 14.4 Hz, 1H), 1.16 (ddd, J = 2.0, 3.2, 14.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 172.6, 172.2, 171.4, 167.5, 148.6, 147.2, 138.2, 128.9, 128.8, 128.7, 128.6, 128.5, 124.3, 122.6, 121.7, 118.5, 116.4, 67.8, 67.7, 60.8, 58.0, 38.7, 36.1, 25.7; HRMS (ESI): Calcd for C36H30N2O5Na (M+Na)+: 593.2052. Found: 593.2055.

Dimethyl 2-((14R)-2-Chloro-6,7,12,12b,13,14-hexahydro-6-oxo-indolo[2,3-a]quinolizine-14-yl)malonate (3e): 13.1 (c 0.23, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.97 (d, J = 8.8 Hz, 1H), 8.12 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.17- 7.43 (m, 5H), 4.70 (dd, J = 2.8, 12.8 Hz, 1H), 3.73 (s, 3H), 3.64 (s, 3H), 3.54-3.64 (m, 2H), 3.32 (d, J = 16.8 Hz, 1H), 2.53 (d, J = 16.8 Hz, 1H), 1.45 (td, J = 4.4, 13.6 Hz, 1H), 1.15 (dt, J = 2.4, 14.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 167.9, 167.5, 154.7, 142.2, 142.1, 141.9, 141.6, 141.4, 140.0, 139.0, 134.8, 129.4, 128.9, 127.2, 126.2, 119.9, 57.6, 55.3, 52.9, 37.1, 29.8, 25.5; HRMS (ESI): Calcd for C24H21ClN2O5Na (M+Na)+: 475.1037. Found: 475.1038.

Dimethyl 2-((14R)-2-Bromo-6,7,12,12b,13,14-hexahydro-6-oxo-indolo[2,3-a]quinolizine-14-yl)malonate (3f): 44.3 (c 0.60, CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.91 (d, J = 8.8 Hz, 1H), 8.11 (s, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.20- 7.45 (m, 5H), 4.69 (dd, J = 2.8, 12.8 Hz, 1H), 3.73 (s, 3H), 3.64 (s, 3H), 3.56-3.62 (m, 2H), 3.41 (d, J = 16.4 Hz, 1H), 2.52 (d, J = 16.8 Hz, 1H), 1.43 (td, J = 4.0, 14.0 Hz, 1H), 1.15 (dt, J = 2.4, 14.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 171.4, 167.9, 167.45, 148.6, 135.8, 135.3, 132.4, 131.8, 129.5, 127.2, 126.6, 122.5, 122.4, 120.2, 116.5, 57.6, 55.3, 52.9, 38.6, 35.9, 25.5; HRMS (ESI): Calcd for C24H21BrN2O5Na (M+Na)+: 519.0532. Found: 519.0530.

References

  1. (a) Nicolaou, K. C.; Snyder, S. A. Classics in Total Synthesis II; Wiley-VCH: Weinheim, 2003.
  2. (b) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; Wiley-VCH: Weinheim, 1996.
  3. (a) MacMillan, D. W. C.; Walji, A. M. Synthesis 2007, 1477.
  4. (b) Chapman, C. J.; Frost, C. G. Synthesis 2007, 1.
  5. (c) Pellisier, H. Tetrahedron 2006, 62, 2143. https://doi.org/10.1016/j.tet.2005.10.041
  6. (d) Pellisier, H. Tetrahedron 2006, 62, 1619. https://doi.org/10.1016/j.tet.2005.10.040
  7. (e) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. C. Angew. Chem. Int. Ed. Engl. 2006, 45, 7134. https://doi.org/10.1002/anie.200601872
  8. (f) Guo, H. C.; Ma, J. A. Angew. Chem., Int. Ed. 2006, 45, 354. https://doi.org/10.1002/anie.200500195
  9. (g) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
  10. (a) Pellissier, H. Recent Developments in Asymmetric Organocatalysis; RSC: Cambridge, 2010.
  11. (b) List, B., Ed. Asymmetric Organocatalysis; Topics in Current Chemistry, Vol. 291; Springer: Berlin/Heidelberg, 2010.
  12. (c) Dalo, P. I. Enantioselective Organocatalysis; Wiley- VCH: Weinheim, 2007.
  13. (d) Berkessel, A.; Groger, H. Asymmetric Organocatalysis; Wiley-VCH: Weinheim, 2005.
  14. (e) Bertelsen, S.; Jorgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178. https://doi.org/10.1039/b903816g
  15. (f) Dondoni, A.; Massi, A. Angew. Chem. Int. Ed. Engl. 2008, 47, 4638. https://doi.org/10.1002/anie.200704684
  16. (g) Pellisier, H. Tetrahedron 2007, 63, 9267. https://doi.org/10.1016/j.tet.2007.06.024
  17. (a) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237. https://doi.org/10.1002/adsc.201100714
  18. (b) Albrecht, .; Jiang, H.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2011, 50, 8492. https://doi.org/10.1002/anie.201102522
  19. (c) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167. https://doi.org/10.1038/nchem.539
  20. (d) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem. Int. Ed. 2008, 47, 6138. https://doi.org/10.1002/anie.200705523
  21. (e) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037. https://doi.org/10.1039/b800245m
  22. (f) Enders, D.; Grondal, C.; Huttl, M. R. M. Angew. Chem. Int. Ed. 2007, 46, 1570. https://doi.org/10.1002/anie.200603129
  23. (a) Seo, S. W.; Kim, S.-G. Tetrahedron Lett. 2012, 53, 2809. https://doi.org/10.1016/j.tetlet.2012.03.102
  24. (b) Gwon, S. H.; Kim, S.-G. Tetrahedron: Asymmetry 2012, 23, 1251. https://doi.org/10.1016/j.tetasy.2012.08.004
  25. (c) Gwon, S. H.; Kim, S.-G. Bull. Korean Chem. Soc. 2012, 33, 2781. https://doi.org/10.5012/bkcs.2012.33.8.2781
  26. (d) Choi, K.-S.; Kim, S.-G. Eur. J. Org. Chem. 2012, 1119.
  27. (e) Lee, Y.; Seo, S. W.; Kim, S.-G. Adv. Synth. Catal. 2011, 353,2671. https://doi.org/10.1002/adsc.201100324
  28. (f) Do, J.; Kim, S.-G. Tetrahedron Lett. 2011, 52, 2353. https://doi.org/10.1016/j.tetlet.2011.02.073
  29. (g) Gwon, S. H.; Kim, S.; Kim, S.-G.; Bull. Korean Chem. Soc. 2011, 32, 4163. https://doi.org/10.5012/bkcs.2011.32.12.4163
  30. (h) Lee, Y.; Kim, S.-G. Bull. Korean Chem. Soc. 2011, 32, 311. https://doi.org/10.5012/bkcs.2011.32.1.311
  31. (i) Choi, K.-S.; Kim, S.-G. Synthesis 2010, 3999.
  32. (j) Choi, K.-S.; Kim, S.-G. Tetrahedron Lett. 2010, 51, 5203. https://doi.org/10.1016/j.tetlet.2010.07.138
  33. Heo, S.; Kim, S.; Kim, S.-G. Tetrahedron Lett. 2013, 54, 4978. https://doi.org/10.1016/j.tetlet.2013.07.031
  34. (a) Michael, J. P. Nat. Prod. Rep. 2008, 139.
  35. (b) The Alkaloids: Chemistry and Biology; Cordell, G. A., Ed.; Academic Press: New York, 1988; Vol 50.
  36. (c) Szantay, C.; Honty, K. In The Chemistry of Heterocyclic Compounds; Saxton, J. E., Ed.; Wiley: New York, 1994; Vol. 25, pp 161-216
  37. (d) Baxter, E.W.; Marino, P. S. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Springer: New York, 1992; Vol. 8, pp 197-319.
  38. (a) Jiang, J.; Qing, J.; Gong, L. Z. Chem. Eur. J. 2009, 15, 7031. https://doi.org/10.1002/chem.200900814
  39. (b) Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 10796. https://doi.org/10.1021/ja9024885
  40. (c) Jana, C. K.; Studer, A. Chem. Eur. J. 2008, 14, 6326. https://doi.org/10.1002/chem.200800903
  41. (d) Mergott, D. J.; Zuend, S. J.; Jacobsen, E. N. Org. Lett. 2008, 10, 745 https://doi.org/10.1021/ol702781q
  42. (e) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. https://doi.org/10.1021/ja076179w
  43. (f) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2006, 128, 9646. https://doi.org/10.1021/ja0636791
  44. (a) Hong, B.-C.; Liao, W.-K.; Dange, N. S.; Liao, J.-H. Org. Lett. 2013, 15, 468. https://doi.org/10.1021/ol3032329
  45. (b) Lin, S.; Deiana, L.; Tseggai, A.; Cordova, A. Eur. J. Org. Chem. 2012, 398.
  46. (c) Wu, X.; Dai, X.; Fang, H.; Nie, L.; Chen, J.; Cao, W.; Zhao, G. Chem. Eur. J. 2011, 17, 10510. https://doi.org/10.1002/chem.201101468
  47. (d) Dai, X.; Wu, X.; Fang, H.; Nie, L.; Chen, J.; Deng, H.; Cao, W.; Zhao, G. Tetrahedron 2011, 67, 3034. https://doi.org/10.1016/j.tet.2011.03.007
  48. (e) Sun, X.; Ma, D. Chem. Asian J. 2011, 2158.
  49. (f) Wu, X. Y.; Dai, X. Y.; Nie, L. L.; Fang, H. H.; Chen, J.; Ren, Z. J.; Cao, W. G.; Zhao, G. Chem. Commun. 2010, 2733.
  50. Mielgo, A.; Palomo, C. Chem. Asian J. 2008, 3, 922. https://doi.org/10.1002/asia.200700417
  51. (a) Cordova, A. Catalytic Asymmetric Conjugate Reactions; Wiley- VCH: Weinheim, 2010.
  52. (b) Vicario, J. L.; Badia, D.; Carrillo, L.; Reyes, E. Organocatalytic Enantioselective Conjugate Addition Reactions; RSC: Cambridge, 2010.
  53. (c) Alma i, D.; Alonso, D. A.; Najera, C. Tetrahedron: Asymmetry 2007, 18, 299. https://doi.org/10.1016/j.tetasy.2007.01.023
  54. (d) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
  55. (a) Fleischer, I.; Pfaltz, A. Chem. Eur. J. 2010, 16, 95. https://doi.org/10.1002/chem.200902449
  56. (b) Maltsev, O. V.; Kucherenko, A. S.; Zlotin, S. G. Eur. J. Org. Chem. 2009, 5134.
  57. (c) Wang, Y.; Li, P.; Liang, X.; Ye, J. Adv. Synth. Catal. 2008, 350, 1383. https://doi.org/10.1002/adsc.200800070
  58. (d) Palomo, C.; Landa, A.; Mielgo, A.; Oiarbide, M.; Puente, A.; Vera, S. Angew. Chem. Int. Ed. Engl. 2007, 46, 8431. https://doi.org/10.1002/anie.200703261
  59. (a) Stockigt, J.; Antonchick, A. P.; Wu, F.; Waldmann, H. Angew. Chem., Int. Ed. 2011, 50, 8538. https://doi.org/10.1002/anie.201008071
  60. (b) Larghi, E. L.; Kaufman, T. S. Eur. J. Org. Chem. 2011, 5195.
  61. (c) Royer, J.; Bonin, M.; Micouin, L. Chem. Rev. 2004, 104, 2311. https://doi.org/10.1021/cr020083x
  62. (d) Maryanoff, B. E.; Zhang, H.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev. 2004, 104, 1431. https://doi.org/10.1021/cr0306182

Cited by

  1. -Promoted Cascade Michael/Aza-Cyclization Reactions vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10049
  2. ChemInform Abstract: Asymmetric Construction of Benzindoloquinolizidine: Application of an Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction. vol.45, pp.37, 2014, https://doi.org/10.1002/chin.201437171