DOI QR코드

DOI QR Code

Numerical Simulation for Estimating Fish Shelter at the Downstream of Gumi Weir

수리구조물 하류에서 어류의 피난처 해석을 위한 수치모의 (구미보를 중심으로)

  • Cho, Hyoung Jin (Department of Civil Engineering, College of Construction and Transport Engineering, Korea National University of Transportation) ;
  • Jang, Chang-Lae (Department of Civil Engineering, College of Construction and Transport Engineering, Korea National University of Transportation)
  • 조형진 (한국교통대학교 건설교통대학 토목공학과) ;
  • 장창래 (한국교통대학교 건설교통대학 토목공학과)
  • Published : 2014.03.05

Abstract

This study analyzes characteristics of flow using 3 dimensional numerical model, Delft3D, at the downstream of hydraulic structure. And fish shelters are suggested by analyzing them in flood time. A hydraulic structure changes flow conveyance, water depth and velocity affecting the activity of the fish. Flow depth decreases and velocity is fast near the left bank at the downstream of Gumi weir because of the concentration of flow due to it. Therefore, fish shelters are generated near the right bank of it. As a result of vertical velocity distribution which indicates the range of fish activity, maximum value are 0.0043 m/s in 30-year of return period of flood 0.0052 m/s in 50 year flood, 0.0046 m/s in 80-year of return period of flood, and 0.0039 m/s in 100-year of return period of flood. As the discharge increases, the areas of fish shelters decreases because depth and turbulent energy increase according to increases discharge. The estimated areas of fish shelters near the right bank decrease from 61.5% in 30-year of return period of flood to 39.0% 100-year of return period of flood. Therefore, the constructed hydraulic structures affect fish shelters.

본 연구에서는 수공구조물 하류에서의 하천흐름 특성을 3차원 수치모형인 Delft3D 모형을 이용하여 분석하고, 하천흐름 특성을 분석한 결과를 기반으로 홍수시에 어류의 피난처를 예측하였다. 수공구조물은 통수단면적을 변화시키고 유속과 수심을 변화시켜서 어류활동에 영향을 준다. 대상유역인 구미보 직하류에서는 흐름의 중심이 되는 저수로가 좌안으로 집중되면서 우안에서 수심이 낮고, 유속이 느리게 나타나서 어류의 피난처 형성은 우안을 중심으로 발생하였다. 어류의 활동범위를 분석하기 위해 수직방향 유속을 비교한 결과, 30년 빈도와 50년 빈도 경우 우안에서 최대 0.0043 m/s, 0.0052 m/s로 나타났고, 80년 빈도와 100년 빈도는 좌안에서 최대 0.0046 m/s, 0.0039 m/s로 나타났다. 또한 유량이 증가함에 따라 수심이 깊어지고 난류에너지가 상승하여 어류의 피난처가 감소되었다. 30년 빈도 홍수량와 100년 빈도 홍수량에 대하여 어류의 피난처를 비교하면 우안에 형성되는 어류의 피난처 예상 면적이 61.5%에서 39.0%으로 감소하였다.

Keywords

References

  1. Bovee, K. D. (1982). "A guied to stream habitat analysis using the in stream flow incremental methodology." Instream Flow Information paper No. 12, FWS/ OBSERVATION 82/86, U.S Fish and Wildlife Service, Washington D. C.
  2. Clifford, N. J., Wright, N. G., Harvey, G., Gurnell, A. M., Harmar, O. P. and Soar, P. J. (2010). Numerical Modeling of River Flow for Ecohydraulic Applications : Some Experiences with velocity Characterization in Field and Simulated Data. J. Hydraul. Eng., ASCE, Vol. 136, No. 12, pp. 1033-1041. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000057
  3. Ge, L. and Sotiropoulos, F. (2005). "3D unsteady RANS modeling of complex hydraulic engineering flows. I: Numerical model." J. Hydraul. Eng., ASCE, Vol. 131, No. 9, pp. 800-808. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:9(800)
  4. Lauters, F., Lavandier, P., Lim, P., Sabation, C. and Belaud, A. (1996). "Influence of hydropeaking on invertebrates and their relationship with fish feeding habitats in Pyrenean River." Regul. Rivers: Res. manage., Vol. 12, pp. 563-573. https://doi.org/10.1002/(SICI)1099-1646(199611)12:6<563::AID-RRR380>3.0.CO;2-M
  5. Nezu, I., Nakagawa, H., Ishida, Y. and Kadota, A. (1993). "Bed shear stress in unsteady open- channel flows." Proc., 1993 Hydraulic Conf., ASCE, New York, 1458-1463.
  6. Nezu, I., Kadota, A. and Nakagawa, H. (1997). "Turbulent structure in unsteady depth-varying open-channel flows." J. Hydraul. Eng., ASCE, Vol. 123, No. 9, pp. 752-763. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:9(752)
  7. Rowinski, P. M., Czernuszenko, W. and Pretre, J. M. (2000). "Time-dependent shear velocities in channel routing." Hydrol. Sci. J., Vol. 45, No. 6, pp. 881-895. https://doi.org/10.1080/02626660009492390
  8. Salaheldin, T. M., Imran, J. and Chaudhry, M. H. (2004). "Numerical modeling of three-dimensional flow field around circular piers." J. Hydraul. Eng., ASCE, Vol. 130, No. 2, pp. 91-100. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(91)
  9. Saltveit, S. J., Halleraker, J. H., Arnekleiv, J. V. and Harby, A. (2001). "Field experiments on stranding in juvenile atlantic salmon and brown trout during rapid flow decreases caused by hydropeaking." Regul. Rivers: Res. manage., Vol. 17, pp. 609-652. https://doi.org/10.1002/rrr.652
  10. Shen, Y. and Dipas, P. (2010). "Modeling unsteady flow characteristics of hydropeaking operations and their implications on fish habitat." Journal of Hydraulic Engineering, ASCE, Vol. 136, No. 12, pp. 1053-1066. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000112
  11. Song, T. and Graf, W. H. (1992). "Velocity and turbulence distribution in unsteady open-channel flows." J. Hydraul. Eng., ASCE, Vol. 122, No. 3, pp. 141-154.
  12. Tu, H. and Graf, W. H. (1992). "Velocity distribution in unsteady open channel flow over gravel beds." J. Hydrosci. Hydr. Eng., Vol. 10, No. 1, pp. 11-25.
  13. Valentin, S., Lauters, F., Sabaton, C., Breil, P. and Souchon, Y. (1996). "Modeling temporal variations of physical habitat for brown trout (salmo trutta) in hydropeaking conditions." Regul. Rivers: Res. manage., Vol. 12, pp. 317-330. https://doi.org/10.1002/(SICI)1099-1646(199603)12:2/3<317::AID-RRR398>3.0.CO;2-1

Cited by

  1. Assessment of Ecological Flowrate and Fish Community to Weir Type in Stream vol.39, pp.6, 2017, https://doi.org/10.4491/KSEE.2017.39.6.339