DOI QR코드

DOI QR Code

산화갈륨 희생층을 이용한 AlGaN/GaN-on-Si HFET의 특성 개선 연구

Improved Characteristics in AlGaN/GaN-on-Si HFETs Using Sacrificial GaOx Process

  • 이재길 (홍익대학교 전자전기공학부) ;
  • 차호영 (홍익대학교 전자전기공학부)
  • Lee, Jae-Gil (School of Electronic and Electrical Engineering, Hongik University) ;
  • Cha, Ho-Young (School of Electronic and Electrical Engineering, Hongik University)
  • 투고 : 2013.11.25
  • 발행 : 2014.02.25

초록

본 논문에서는 AlGaN/GaN HFET의 누설전류 특성을 개선하고자 산화갈륨 희생층 공정을 이용한 새로운 패시베이션 공정을 제안하였다. 오믹 전극 형성시 고온 열처리 과정으로 인해 갈륨의 표면 손상이 불가피하다. 표면 손상을 방지하기 위해 보편적으로 선표면처리 공정을 사용하기도 하지만 이러한 방법만으로는 표면 손상을 완전히 없애기 어렵다. 본 연구에서 새롭게 제안된 산화갈륨 희생층을 이용한 공정 방법은 고온 열처리 후 손상된 표면에 $O_2$ 플라즈마 처리를 통해 산화갈륨층을 형성한 뒤, 염화수소를 이용하여 산화갈륨층을 식각한다. 우수한 상태의 표면 상태를 얻을 수 있었으며, 누설전류의 확연한 감소로 subthreshold slope이 개선되었을 뿐만 아니라 최대 드레인 전류 특성도 594 mA/mm에서 634 mA/mm로 증가하였다. 질화갈륨 희생층 공정의 효과를 분석하기 위해 X-선 광전자 분광법을 이용하여 질화갈륨의 표면 변화에 대해 살펴보았다.

We have developed a novel passivation process employing a sacrificial gallium oxide process in order to recover the surface damage in AlGaN/GaN HFETs. Even with a conventional prepassivation process, surface damage during high temperature ohmic annealing cannot be avoided completely. Therefore, it is necessary to recover the damaged surface to avoid the characteristic degradation. In this work, a sacrificial gallium oxide process has been proposed in which the damaged surface after ohmic annealing was oxidized by oxygen plasma treatment and thereafter etched back using HCl. As a result, the leakage current was dramatically reduced and thus the subthreshold slope was significantly improved. In addition, the maximum drain current level was increased from 594 to 634 mA/mm. To verify the effects, the surface conditions were carefully investigated using X-ray photoelectron spectroscopy.

키워드

참고문헌

  1. T. P. Chow, "High-voltage SiC and GaN power devices," Microelectronic Engineering, vol. 83, no. 1, pp. 112-122, 2006. https://doi.org/10.1016/j.mee.2005.10.057
  2. J. K. Mun, S. B. Bae, W. J. Chang, J. W. Lim, E. S. Nam, "Global R&D Trends of GaN Electronic Devices," ETRI Electronics and Telecommunications Trends, vol. 27, no. 1, pp. 75-85, Feb 2012.
  3. T. Uesugi and T. Kachi, "GaN Power Switching Devices for Automotive Applications," CS MANTECH Conference, Tampa, Florida, May 2009.
  4. U. K. Mishra, P. Parikh, and Y. Wu, "AlGaN/GaN HEMTs: an Overview of Device operation and Applications," proc. IEEE, vol. 90, no. 6, pp.1021-1031, 2002.
  5. W. Saito, I. Omura, T. Domon, and K. Tsuda, "High Voltage and High Switching Frequency Power-Supplies using a GaN-HEMT, " Compound Semiconductor Integrated Circuit Symposium, pp. 253-256, Nov 2006.
  6. J.-G. Lee, B.-R. Park, C.-H. Cho, K.-S. Seo, and H.-Y. Cha, "Low Turn-on Voltage AlGaN/GaN-on-Si Rectifier With Gated Ohmic Anode," IEEE Electron Dev. Lett., vol. 34, no. 2, pp. 214-216, 2013. https://doi.org/10.1109/LED.2012.2235403
  7. Y. C. Choi, M. Pophristic, H.-Y cha, B. Peres, M. G. Spencer, and L. F. Eastman, "The Effect of an Fe-doped GaN Buffer on off-State Breakdown Characteristics in AlGaN/GaN HEMTs on Si Substrate," IEEE Trans. Electron Dev., vol. 53, no. 12, pp. 2926-2931, 2006. https://doi.org/10.1109/TED.2006.885679
  8. C. Poblenz, P. Waltereit, S. Rajan, S. Heikman, U. K. Mishra, and J. S. Speck, "Effect of carbon doping on buffer leakage in AlGaN/GaN high electron mobility transistors," J. Vac. Sci. Technol. B, vol. 22, no. 3, pp. 1145-1149, 2004. https://doi.org/10.1116/1.1752907
  9. J.-C. Her, H.-J. Cho, C.-S. Yoo, H.-Y. Cha, J.-E. Oh, and K.-S. Seo, "$SiN_x$ Prepassivation of AlGaN/GaN High-Electron-Mobility Transistors Using Remote-Mode-Enhanced Chemical Vapor Deposition," J. J. Appl. Phys., vol. 49, no. 4, p. 041002, 2010. https://doi.org/10.1143/JJAP.49.041002
  10. O. Seok, W. Ahn, Y.-S. Kim, M.-K. Han, and M.-W. Han, "3.2 kV AlGaN/GaN MIS-HEMTs Employing RF Sputtered $Ga_2O_3$ Films," 24th Int. Symp. Power. Semicond. Dev. ICs, Bruges, Belgium, June 2012.
  11. K.-W. Kim, S.-D Jung, D.-S. Kim, H.-S. Kang, K.-S. Im, J.-J. Oh, J.-B. Ha, J.-K. Shin, and J.-H Lee, "Effects of TMAH Treatment on Device Performance of Normally Off $Al_2O_3/GaN$ MOSFET," IEEE Electron Dev. Lett., vol. 32, no. 10, pp. 1376-1378, 2011. https://doi.org/10.1109/LED.2011.2163293