DOI QR코드

DOI QR Code

유방암 환자의 방사선치료에 있어서 순치료계획 세기변조방사선치료법과 쐐기접선조사기법의 선량측정 비교

Dosimetric Advantages of the Field-in-field Plan Compared with the Tangential Wedged Beams Plan for Whole-breast Irradiation

  • 김수지 (서울대학교 보라매병원 방사선종양학과) ;
  • 최윤석 (서울대학교 보라매병원 방사선종양학과)
  • Kim, Suzy (Department of Radiation Oncology, Seoul National University Boramae Medical Center) ;
  • Choi, Yunseok (Department of Radiation Oncology, Seoul National University Boramae Medical Center)
  • 투고 : 2014.10.15
  • 심사 : 2014.11.28
  • 발행 : 2014.12.30

초록

유방암 환자들에 대한 방사선치료에서 순치료계획 세기변조방사선치료법을 쐐기접선조사기법과 선량측정면에서 비교분석하고자 이 연구를 수행했다. 우측 유방암 환자 20명과 좌측 유방암 환자 10명에 대해 후향적으로 연구를 시행했다. 각 환자에 대해 쐐기접선조사기법과 순치료계획 세기변조방사선치료법을 이용한 방사선치료 계획을 수립한 후에 선량학적 분석을 시도했다. 방사선치료계획용 표적체적에 대한 선량학적 비교 분석을 위해 homogeneity index, conformity index, uniformity index를 사용했다. 또한 폐와 심장에 대한 선량학적 분석을 위해서 평균선량값과 10, 20, 30 Gy 이상을 조사받는 체적의 백분율을 비교했다. 순치료계획 세기변조방사선치료법은 쐐기접선조사기법에 비해 계획표적체적에 대해 선량측정면에서 통계적으로 의미있게 더 나은 결과를 보였다. 폐에 대한 방사선량도 순치료계획 세기변조방사선치료법을 사용했을 때 10 Gy, 30 Gy 이상 조사받는 체적의 백분율이 통계적으로 의미있게 낮았다. 좌측 유방암 환자들에서 심장에 대한 방사선량을 측정했을 때에도 순치료계획 세기변조방사선치료법을 사용했을 때 평균선량값, 20 Gy, 30 Gy이상 조사받는 체적의 백분율이 더 낮은 것을 알 수 있었다. 순치료계획 세기변조방사선치료법은 쐐기접선조사기법에 비해 유방의 표적체적에 대한 선량균일성, 적합성 등에서 더 나은 결과를 보였다. 또한 순치료계획 세기변조방사선치료법을 사용했을 때 폐와 심장에 대한 방사선량도 더 낮출 수 있었다.

The purpose of this study is to evaluate the dosimetric outcome of the field-in-field (FIF) plans compared with tangential wedged beams (TWB) plans for whole breast irradiation of breast cancer patients. Twenty patients with right-sided breast cancer and 10 patients with left-sided breast cancer were retrospectively enrolled in this study. We generated a FIF plan and a TWB plan for each patient to compare dosimetric outcomes. The dose the homogeneity index (HI), the conformity index (CI) and the uniformity index (UI) were defined and used for comparison of the dosimetric outcome of the planning target volume (PTV). To compare the dosimetric outcome of the organs at risk, the mean dose ($D_{mean}$) and the percentage of volumes receiving more than 10, 20 and 30 Gy of the ipsilateral lung and heart were used. The FIF plans had significantly lower HI (p=0.002), higher UI (p=0.000) and CI (p=0.000) than those of the TWB plans, which means that the FIF plans were better than the TWB plans in the dosimetric comparisons of the PTV. The $V10_{lung}$ ($17.1{\pm}7.1$ vs. $18.6{\pm}6.6%$, p=0.020) and $V30_{lung}$ ($10.3{\pm}5.1%$ vs. $10.7{\pm}5.2%$, p=0.000) were lower with the FIF plans compared with those of the TWB plans, with statistical significance. For the left-sided breast cancer patients, $D_{mean}$ of the heart ($2.6{\pm}1.3$ vs. $3.2{\pm}1.4$ Gy, p=0.000), $V20_{heart}$ ($3.4{\pm}2.6$ vs. $3.6{\pm}2.8%$, p=0.005) and $V30_{heart}$ ($2.6{\pm}2.3%$ vs. $2.9{\pm}2.4%$, p=0.004) were significantly lower for the FIF plans in comparison with those of the TWB plans. The FIF plans increased the dose homogeneity, conformity and uniformity of the target volume for the whole-breast irradiation compared with the TWB plans. Moreover, FIF plans reduced the doses to the ipsilateral lung and heart.

키워드

참고문헌

  1. Kim Z, Min SY, Yoon CS, et al: The basic facts of Korean breast cancer in 2011: results of a nationwide survey and breast cancer registry database. J Breast Cancer 17:99-106 (2014) https://doi.org/10.4048/jbc.2014.17.2.99
  2. Fisher B, Anderson S, Bryant J, et al: Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233-1241 (2002) https://doi.org/10.1056/NEJMoa022152
  3. Clarke M, Collins R, Darby S, et al: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials. Lancet 17:2087-2106 (2005)
  4. Rapiti E, Fiorreta G, Vlastos G, et al: Breast-conserving surgery has equivalent effect as mastectomy on stage I breast cancer prognosis only when followed by radiotherapy. Radiother Oncol 69:277-284 (2003) https://doi.org/10.1016/j.radonc.2003.09.003
  5. Buchholz TA, Gurqoze E, Bice WS, et al: Dosimetric analysis of intact breast irradiation in off-axis planes. Int J Radiat Oncol Biol Phys 39:261-267 (1997)
  6. Solin LJ, Chu JC, Sontag MR, et al: Three-dimensional photon treatment planning of the intact breast. Int J Radiat Oncol Biol Phys 21:193-203 (1991)
  7. Sun LM, Meng FY, Yang TH, et al: Field-in-field plan does not improve dosimetric outcome compared with the wedged beams plan for breast cancer radiotherapy. Med Dosim 39: 79-82 (2014) https://doi.org/10.1016/j.meddos.2013.10.002
  8. Sasaoka M, Futami T: Dosimetric evaluation of whole breast radiotherapy using field-in-field technique in early-stage breast cancer. Int J Clin Oncol 16:250-256 (2011) https://doi.org/10.1007/s10147-010-0175-1
  9. Onal C, Sonmez A, Arslan G: Dosimetric comparison of the field-in-field technique and tangential wedged beams for breast irradiation. Jpn J Radiol 30:218-226 (2012) https://doi.org/10.1007/s11604-011-0034-7
  10. Barnett GC, Wilkinson J, Moody AM, et al: A randomized controlled trial of forward-planned radiotherapy (IMRT) for early breast cancer: Baseline characteristics and dosimetry results. Radiother Oncol 92:34-41 (2009) https://doi.org/10.1016/j.radonc.2009.03.003
  11. Mukesh MB, Barnett GC, Wilkinson JS, et al: Randomized controlled trial of intensity-modulated radiotherapy for early breast cancer: 5-year results confirm superior overall cosmesis. J Clin Oncol 31;4488-4495 (2013) https://doi.org/10.1200/JCO.2013.49.7842
  12. Marks LB, Yu X, Vujaskovic Z, et al: Radiation-induced lung injury. Semin Radiat Oncol 13:333-345 (2003) https://doi.org/10.1016/S1053-4296(03)00034-1
  13. Graham MV, Purdy JA, Emami B, et al: Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323-329 (1999)
  14. Claude L, Perol D, Ginestet C, et al: A prospective study on radiation pneumonitis following conformal radiation therapy in non-small cell lung cancer. Radiother Oncol 71:175-181 (2004) https://doi.org/10.1016/j.radonc.2004.02.005
  15. Zhang XJ, Sun JG, Sun J, et al: Prediction of radiation pneumonitis in lung cancer patients: a systemic review. J Cancer Res Clin Oncol 138:2103-2116 (2012) https://doi.org/10.1007/s00432-012-1284-1
  16. Blom Goldman U, Anderson M, Wennberg B, et al: Radiation pneumonitis and pulmonary function with lung dosevolume constraints in breast cancer irradiation. J Radiother Pract 13:211-217 (2014) https://doi.org/10.1017/S1460396913000228
  17. Harris EE, Correa C, Hwang WT, et al: Late cardiac mortality and morbidity in early-stage breast cancer patients after breast conservation treatment. J Clin Oncol 24:4100-4106 (2006) https://doi.org/10.1200/JCO.2005.05.1037
  18. Borger JH, Hooning MJ, Boersma LJ, et al: Cardiotoxic effects of tangential breast irradiation in early breast cancer patients: the role of irradiated heart volume. Int J Radiat Oncol Biol Phys 69:1131-1138 (2007) https://doi.org/10.1016/j.ijrobp.2007.04.042
  19. Darby SC, Ewertz M, McGale P, et al: Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987-998 (2013) https://doi.org/10.1056/NEJMoa1209825

피인용 문헌

  1. Performance of the irregular surface compensator compared with four-field box and intensity modulated radiation therapy for gynecologic cancer vol.32, pp.12, 2014, https://doi.org/10.1016/j.ejmp.2016.10.025
  2. Dosimetry comparison and evaluation of 3D and IMRT for left breast cancer radiotherapy techniques treated at ain wazein medical village hospital in Lebanon vol.11, pp.3, 2014, https://doi.org/10.1007/s12553-021-00544-8