DOI QR코드

DOI QR Code

Effects of post anneal for the INZO films prepared by ultrasonic spray pyrolysis

  • Lan, Wen-How (Department of Electrical Engineering, National University of Kaohsiung) ;
  • Li, Yue-Lin (Department of Electrical Engineering, National University of Kaohsiung) ;
  • Chung, Yu-Chieh (Department of Electrical Engineering, National University of Kaohsiung) ;
  • Yu, Cheng-Chang (Department of Electrophysics, National Chiao Tung University) ;
  • Chou, Yi-Chun (Department of Electrical Engineering, National University of Kaohsiung) ;
  • Wu, Yi-Da (Department of Electrical Engineering, National University of Kaohsiung) ;
  • Huang, Kai-Feng (Department of Electrophysics, National Chiao Tung University) ;
  • Chen, Lung-Chien (Department of Electro-optical Engineering, National Taipei University of Technology)
  • Received : 2014.08.05
  • Accepted : 2015.01.14
  • Published : 2014.12.25

Abstract

Indium-nitrogen co-doped zinc oxide thin films (INZO) were prepared on glass substrates in the atmosphere by ultrasonic spray pyrolysis. The aqueous solution of zinc acetate, ammonium acetate and different indium sources: indium (III) chloride and indium (III) nitrate were used as the precursors. After film deposition, different anneal temperature treatment as 350, 450, $550^{\circ}C$ were applied. Electrical properties as concentration and mobility were characterized by Hall measurement. The surface morphology and crystalline quality were characterized by SEM and XRD. With the activation energy analysis for both films, the concentration variation of the films at different heat treatment temperature was realized. Donors correspond to zinc related states dominate the conduction mechanism for these INZO films after $550^{\circ}C$ high temperature heat treatment process.

Keywords

Acknowledgement

Supported by : Ministration of Science and Technology

References

  1. Benhaliliba, M.C., Benouis, E., Aida, M.S., Yakuphanoglu, F. and Juarez, A.S. (2010), "Indium and aluminium-doped ZnO thin films deposited onto FTO substrates: nanostructure, optical, photoluminescence and electrical properties", J. Sol-Gel. Sci. Technol., 55, 335-342. https://doi.org/10.1007/s10971-010-2258-x
  2. DocumentKang, Y.C., Lenggoro, I.W., Park, S.B. and Okuyama, K. (2000), "YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis", Mater. Res. Bul., 35(5), 789-798. https://doi.org/10.1016/S0025-5408(00)00257-9
  3. DocumentIslam, M.R. and Podder, J. (2009), "Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor", Cryst. Res. Tech., 44(3), 286-292. https://doi.org/10.1002/crat.200800326
  4. Du, G.T., Liu, W.F., Bian, J.M., Hu, L.Z., Liang, H.W., Wang, X.S., Liu, A.M. and Yang, T.P. (2006), "Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis", Appl. Phys. Lett., 89(5), 052113. https://doi.org/10.1063/1.2245217
  5. Dunkle, S.S., Helmich, R.J. and Suslick, K.S. (2009), "BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis", J. Phys. Chem. C, 113(28), 11980-11983. https://doi.org/10.1021/jp903757x
  6. Fan, J.C., Sreekanth, K.M., Xie, Z., Chang, S.L. and Rao, K.V. (2013), "p-Type ZnO materials: Theory, growth, properties and devices", Prog. Mater. Sci., 58(6), 874-985. https://doi.org/10.1016/j.pmatsci.2013.03.002
  7. Fang, Z.Q. and Farlow, G.C. (2007), "Electron irradiation induced deep centers in hydrothermally grown ZnO", J. Appl. Phys., 101, 086106. https://doi.org/10.1063/1.2719003
  8. Gur, E., Tuzemen, S. and Dogan, S. (2009), "Temperature-dependent electrical characterization of nitrogendoped ZnO thin film: vacuum annealing effect", Physica Scripta, 79, 035701-1-5. https://doi.org/10.1088/0031-8949/79/03/035701
  9. Ilican, S., Caglar, Y., Caglar, M. and Yakuphanoglu, F. (2006), "Electrical conductivity, optical and structural properties of indium-doped ZnO nanofiber thin film deposited by spray pyrolysis method", Physica E, 35, 131-138. https://doi.org/10.1016/j.physe.2006.07.009
  10. Kumar, P.M.R., Kartha, C.S., Vijayakumar, K.P., Singh, F. and Avasthi, D.K. (2005), "Effect of fluorine doping on structural, electrical and optical properties of ZnO thin films", Mater. Sci. Eng. B, 117, 307-312. https://doi.org/10.1016/j.mseb.2004.12.040
  11. Lee, H.Y., Xia, S.D., Zhang, W.P., Lou, L.R. and Yan, J.T. (2010), "Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique", J. Appl. Phys., 108, 073119. https://doi.org/10.1063/1.3477325
  12. Mende, L.S. and MacManus-Driscoll, J.L. (2007), "ZnO-nanostructures, defects, and devices", Materialst., 10(5), 40-48.
  13. Mendelsberg, R.J., Kerler, M., Durbin, S.M. and Reeves, R.J. (2008), "Photoluminescence behavior of ZnO nanorods produced by eclipse PLD from a Zn metal target", Superlat. Microstr., 43, 594-599. https://doi.org/10.1016/j.spmi.2007.07.015
  14. Mitra, P., Chatterjee, A.P. and Maiti, H. S. (1998), "Chemical deposition of ZnO films for gas sensors", J. Mater. Sci., Mater. Elect., 9, 441-445. https://doi.org/10.1023/A:1008993706957
  15. Pagni, O., Somhlahlo, N.N., Weichsel, C. and Leitch, A.W.R. (2006),"Electrical properties of ZnO thin films grown by MOCVD", Physica B, 376-377, 749-751. https://doi.org/10.1016/j.physb.2005.12.187
  16. Paraguay, D.F., Estrada, L.W., Acosta, N.D.R., Andrade, E. and Miki-Yoshida, M. (1999), "Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis", Thin Solid Film., 350(1), 192-202. https://doi.org/10.1016/S0040-6090(99)00050-4
  17. Singh, P., Kumar, A., Deepak. and Kaur, D. (2007), "Growth and characterization of ZnO nanocrystalline thin films and nanopowder via low-cost ultrasonic spray pyrolysis", J. Cryst. Growth, 306(2), 303-310. https://doi.org/10.1016/j.jcrysgro.2007.05.023
  18. Skrabalak, S.E., Suslick, K.S. (2006), "Porous carbon powders prepared by ultrasonic spray pyrolysis", J. Am. Chem. Soc., 128(39), 12642-12643. https://doi.org/10.1021/ja064899h
  19. Studenikin, S. A., Golego, N. and Cociverab, M. (1998), "Density of band-gap traps in polycrystalline films from photoconductivity transients using an improved Laplace transform method", J. Appl. Phys., 84(9), 5001-5004. https://doi.org/10.1063/1.368746
  20. Sun, Y. and Wang, H. (2003), "The electronic properties of native interstitials in ZnO", Physica B, 325, 157-163. https://doi.org/10.1016/S0921-4526(02)01517-X
  21. Tsay, C.Y. and Wang, M.C. (2013), "Structural and optical studies on sol-gel derived ZnO thin films by excimer laser annealing", Ceram. Int., 39, 469-474. https://doi.org/10.1016/j.ceramint.2012.06.050
  22. Wang, X.B., Song, C., Li, D.M., Geng, K.W., Zeng, F. and Pan, F. (2006), "The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film", Appl. Surf. Sci., 253, 1639-1643. https://doi.org/10.1016/j.apsusc.2006.02.059
  23. Yamamoto, N., Makino, H., Osone, S., Ujihara, A., Ito, T., Hokari, H., Maruyama, T. and Yamamoto T. (2012), "Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels", Thin Solid Film., 520, 4131-4138. https://doi.org/10.1016/j.tsf.2011.04.067
  24. Yamamoto, T. and Yoshid, H.K. (2001), "Physics and control of valence states in ZnO by codoping method", Physica B, 302-303, 155-162. https://doi.org/10.1016/S0921-4526(01)00421-5
  25. Ye, H.B., Kong. J.F., Shen, W.Z., Zhao, J.L. and Li, X.M. (2007), "Origins of shallow level and hole mobility in codoped p-type ZnO thin films", Appl. Phys. Lett., 90, 102115. https://doi.org/10.1063/1.2711538
  26. Yuan, N., Li, J., Fan, L., Wang, X. and Zhou, Y.(2006), "Structure, electrical and optical properties of N-In codoped ZnO thin films prepared by ion-beam enhanced deposition method", J. Cryst. Growth, 290, 156-160. https://doi.org/10.1016/j.jcrysgro.2006.01.004