DOI QR코드

DOI QR Code

Optimization of biomethane production by biogas upgrading process using response surface mothodolgy

반응표면분석을 이용한 바이오가스 고질화공정을 통한 바이오메탄

  • 박성범 (한솔신텍(주) 기술본부) ;
  • 성현제 (한솔이엠이(주) 연구소) ;
  • 심동민 (한솔이엠이(주) 연구소) ;
  • 김낙주 (서울과학기술대학교 정밀화학과)
  • Received : 2014.02.05
  • Accepted : 2014.06.12
  • Published : 2014.06.30

Abstract

This research was focused to apply response surface methodology for optimization of bio-methane production by biogas upgrading process. Methane concentration(Y1) and methane efficiency(Y2) on biogas upgrading process were mathematically described as being modeled by the use of the Box-Behnken design on response surface methodology. The results of ANOVA(analysis of variance) about models, the probability value of the methane concentration and methane recovery response surface model are 0.0001 and 0.0001, respectively and coefficient of determination($R^2$) are 0.9788 and 0.9710, respectively. The response surface model is proved of high reliability and suitability. The operation pressure had the greatest influence to methane concentration than other operation parameters and the PSA rotary valve velocity had the greatest influence to methane recovery than other operation parameters. Optimal condition of biogas upgrading process for production of $100Nm^3/hr$ bio-methane were operation pressure 8.0bar and outlet flow rate 31.55RPM, respectively. At that operation condition the methane concentration of bio-methane was 97.13% and methane recovery in biogas upgrading process was 75.89%.

본 연구는 혐기성소화조에서 발생된 바이오가스로부터 바이오메탄을 생산하기 위한 고질화 공정의 운전조건을 최적화하기 위하여 반응표면 분석모델을 적용하였다. 반응표면 분석법의 하나인 Box-Behnken 설계법을 이용하였으며 바이오가스 고질화 공정의 메탄농도와 메탄회수율을 극대화하기 위한 수학적인 최적운전조건을 도출하였다. 도출된 반응표면모델의 적합성을 검증한 결과 각 모델의 p Value가 0.05 이하로서 유의성이 매우 높게 나타났으며, 결정계수($R^2$)는 각각 0.9788, 0.9710 이었다. 그리고 이산화탄소/메탄분리공정에서 메탄농도에 대해 운전압력이 가장 크게 영향을 미치고 다음으로 바이오메탄 생산량, PSA 회전밸브 속도의 순이다. 메탄회수율에 대해서는 PSA 회전밸브 속도가 가장 크게 영향을 미치고 있으며, 바이오메탄 생산량, 운전압력의 순으로 나타났다. 액체바이오 메탄 생산량이 $100Nm^3/hr$일 때의 최적 운전조건을 도출한 결과, 운전압력이 8.0bar 그리고 PSA 회전 밸브 속도가 31.55RPM일 때 바이오메탄의 메탄농도와 메탄회수율을 최대화할 수 있었고, 이때의 바이오메탄의 메탄농도는 97.13%이고, 메탄회수율은 75.89%이었다.

Keywords

References

  1. 에너지경제연구원, "주요국 신재생에너지 정책동향 및 그린에너지 산업, 기술개발 전략분석의 시사점", (2010).
  2. International Energy Agency, "World energy outlook 2010", (2010).
  3. International Energy Agency, "Energy technology perspectives 2010", (2010).
  4. Magali, A.D. and Maria, J. M-S.: "U. S. state policies for renewable energy : context an effectiveness", Energy Policy, 39, 2273-2,288 (2011). https://doi.org/10.1016/j.enpol.2011.01.034
  5. Lund, P.D.: "Effects of energy policies on industry expansion in renewable energy", Renewable Energy, 34, 53-64 (2009). https://doi.org/10.1016/j.renene.2008.03.018
  6. Ryckebosch, E. Drouilon, M. and Vervaeren, H.: "Techniques for transformation of biogas to biomethane", Biomass and Bioenergy, 35, 1,633-1,645 (2011). https://doi.org/10.1016/j.biombioe.2011.02.033
  7. Petersson, A. and Wellinger, A.: "Biogas upgrading technologies - developments and innovtions", IEA Bioenergy, (2009).
  8. Alonso-Vicario, A. Ochoa-Gomez, J.R. Gil-Rio, S. Gomez-Jimerez-Aberasturi, O. Ramirez-Lopez, J. Torrecilla-Soria, C.A. and Dominguez, A.: "Purification and upgradng of biogas by pressure swing adsorption on synthetic and natural zeolites", Microporous and Mesoporous Materials, 134, 100-107, (2010). https://doi.org/10.1016/j.micromeso.2010.05.014
  9. Montanari, T. Finocchio, E. Salvatore, E. Garuti, G. Giordano, A. Pistarino, C. and Busca, G.: "CO2 separation and landfill biogas upgrading : A comparion of 4A and 13X zeolite adsorbents", Energy, 36, 314-319 (2011). https://doi.org/10.1016/j.energy.2010.10.038
  10. Liu, X. Zhou, L. Fu, X. Sun, Y. Su, W. and Zhou, Y.: "Adsorption and regeneration study of the mesoporous adsorbent SBA-15 adapted to the capture/separation of CO2 and CH4", Chemical Engineering Science, 62, 1101-1110 (2007). https://doi.org/10.1016/j.ces.2006.11.005
  11. Jeong G. T. Kim D. H. and Park D.H.: "Response surface methodological approach for optimization of free fatty acid removal in feedstock", Applied Biochemistry and Biotechnology, 137, 583-593 (2007).
  12. Jeong G.T. and Park D.H.: "Response surface methodological approach for optimization of enzymatic synthesis of sorbitan methacrylate", Enzyme and Microbial Technology, 39, 381-386 (2006) https://doi.org/10.1016/j.enzmictec.2005.11.046
  13. Molinuevo-Salces, B. Garcia-Gonzalez, M.C. Gonzalez-Fernandez, C. Cuetos, M.J. Moran, A. and Gomez, X.: "Anaerobic co-digestion of livestock wastes with vegetable processing wastes : A statistical analysis", Bioresource Technology, 101, 9479-9485 (2010) https://doi.org/10.1016/j.biortech.2010.07.093
  14. Mohammed, J.K. Bashir, H.A.A., Mohd, S.Y., and Mohd, N.A.: "Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin", Desalination, 254, 154-161 (2010). https://doi.org/10.1016/j.desal.2009.12.002
  15. Mua, Y. Zheng, X.J. and Yu, H.Q.: "Determining optimum conditions for hydrogen production from glucose by an anaerobic culture using response surface methodology (RSM)", International journal of hydrogen energy, 34, 7959-7963 (2009). https://doi.org/10.1016/j.ijhydene.2009.07.093
  16. Cho, I.M. Park, J.H. Kim, Y.G. and Lee, H.K.: "Optimization of photocatalytic degradation condition for dying wastewater using response surface method", Journal of Korean Society on Water Quality, 19, 257-270 (2003).
  17. Song W.Y. and Chang, S. W.: "The study of statistical optimization of NDMA treatment using UV-process", Journal of Korean Society on Water Quality, 25, 96-101 (2009).
  18. Arslan-Alaton, I. Turelia, G. and Olmez-Hancia, T.: "Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology" Journal of Photochemistry and Photobiology A: Chemistry, 202, 142-153, (2009). https://doi.org/10.1016/j.jphotochem.2008.11.019
  19. Belmabkhout, Y. and Sayari, A.: "Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: A dsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures", Chemical Engineering Science, 64, 3729-3735 (2009). https://doi.org/10.1016/j.ces.2009.05.039