DOI QR코드

DOI QR Code

The Influence of the Surface Roughness on the Natural Convection on a Vertical Flat Plate

수직평판의 거칠기가 자연대류 열전달에 미치는 영향

  • 옥승민 (경희대학교 원자력공학과) ;
  • 정범진 (경희대학교 원자력공학과)
  • Received : 2014.05.08
  • Accepted : 2014.05.21
  • Published : 2014.06.30

Abstract

The influence of the surface roughness on the natural convection heat transfers of a vertical plate were measured experimently. Mass transfer experiments instead of heat transfer experiment were performed based on the analogy. The piecewise electrodes were adopted to measure the local-average Nusselt number. Prandtl number was 2,014 and height of the plate was 0.154m The test results for a smooth surface showed similar heat transfer rate with the Le Fevre heat transfer correlation for a vertical plate. The Nusselt number increased with the roughness Rz $0.5{\sim}14.1{\mu}m$. The test results were presented by a simple correlation.

수직평판의 거칠기에 따른 자연대류 열전달의 변화를 실험적으로 측정하였다. 열전달 실험을 대신하여 유사성에 기초한 물질전달로 모사하여 실험을 수행하였다. 또한 국부적인 열전달률을 알기위해 Piecewise electrode를 채택하였다. Pr수는 2,014 그리고 높이(L)는 0.154m로 고정하고 매끈한 수직평판에 대해 실험을 수행한 결과 Le Fevre의 수직평판 상관식과 거의 일치하였다. 거칠기 정도를 $0.5R_z{\mu}m{\sim}14.1R_z{\mu}m$로 변화시켰을 때 $Nu_L$수는 거칠기 정도가 커지면서 증가하는 경향을 나타내었다. 실험결과는 간단한 상관식으로 정리하였다.

Keywords

References

  1. Cheesewright, R., Turbulent natural convection from a vertical plane surface, J. Heat Transfer, 1968, 90, 1-8. https://doi.org/10.1115/1.3597453
  2. Andreopoulos, J. and Wood, D. H., The response of a turbulent boundary layer to a short length of surface roughness, Journal of Fluid Mechanics, 1982, 118, 143-164. https://doi.org/10.1017/S0022112082001001
  3. Ligrani, P. M., Moffat, R. J. and Kays. W. M., Artificial thickened turbulent boundary layers for studying heat transfer and skin friction on rough surfaces, Journal of Fluids Engineering, 1983, 105, 146-153. https://doi.org/10.1115/1.3240954
  4. Mark W. Pinson and Ting Wang. Effects of leading-edge roughness on fluid flow and heat transfer in the transitional boundary layer over a flat plate, 1997, 40, 2813-2823. https://doi.org/10.1016/S0017-9310(96)00336-5
  5. Bejan, A., Convection Heat Transfer, 2nd ed., New York, John Wiley & Sons, INC, 1994, 466-514.
  6. Lun-Shin Yao, Natural convection along a vertical complex wavy surface, 2006, 49, 281-286. https://doi.org/10.1016/j.ijheatmasstransfer.2005.06.026
  7. Fage, A and Preston, J. H., On transition from laminar to turbulent flow in the boundary layer, Proceedings of the Royal Society of London, 1941, 178, 201-227. https://doi.org/10.1098/rspa.1941.0053
  8. Fujii, T., Fujii, M., and Takeushi, M., Influence of various surface roughness on the natural convection, 1973, 16, 629-640. https://doi.org/10.1016/0017-9310(73)90228-7
  9. Shakerin, S., Bohn, M., Loehrke, R. I., Natural convection in an enclosure with discrete roughness elements on a vertical heated wall, 1988, 31, 1423-1430. https://doi.org/10.1016/0017-9310(88)90251-7
  10. Acharya, S. and Mehrotra, A., Natural convection heat transfer in smooth and ribbed vertical channels, Int. J. Heat Mass Transfer, 1993, 36, 236-241. https://doi.org/10.1016/0017-9310(93)80085-9
  11. Dryden, H. L., Review of published data on the effect of roughness on transition from laminar to turbulent flow, Journal of the Aeronautical Science, 1953, 20, 477-482. https://doi.org/10.2514/8.2693
  12. Levich. V. G., Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J, 1962.
  13. Selman, J. R., Tobias, C. W., Mass transfer Measurement by the Limiting Current Technique, Adv. Chem. Eng., 1978, 10, 211-318. https://doi.org/10.1016/S0065-2377(08)60134-9
  14. Ko, S. H., Moon, K. W. and Chung, B. J., Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept, Nuclear Engineering and Technology, 2006, 38, 251-258.
  15. Kang, K. U. and Chung, B. J., The Effects of the Anode size and Position on the Limiting Currents of Natural Convection Mass Transfer Experiment in a Vertical Pipe, Trans. of the KSME(B), 2010, 34, 1-8.
  16. Fenech, E. J. and Tobias, C. W., Mass transfer by free convection at horizontal electrode, Electrochimica Acta, 1960, 2, 311-325. https://doi.org/10.1016/0013-4686(60)80027-8