DOI QR코드

DOI QR Code

M2M / IoT 디바이스의 정밀 위치와 자세 인식을 위한 6축 관성 센서 IC 설계

Design of a 6-Axis Inertial Sensor IC for Accurate Location and Position Recognition of M2M/IoT Devices

  • 김창현 (연세대학교 전기전자공학과 통신네트워크 연구실) ;
  • 정종문 (연세대학교 전기전자공학과 통신네트워크 연구실)
  • 투고 : 2013.10.31
  • 심사 : 2014.01.09
  • 발행 : 2014.01.31

초록

최근 M2M/IoT에 대한 관심이 높아지면서 디바이스의 위치와 자세 등을 인식할 수 있는 동작 인식 센서의 필요성이 대두되고 있다. 본 논문에서는 소형의 디바이스에 적합하도록 저잡음, 저전력, 초소형 6축 관성센서 IC를 구현하였다. 본 논문에서 구현된 IC는 3축의 압전형 자이로 센서와 3축의 압저항형 가속도 센서를 사용하며, 3축의 자이로스코프 감지 회로, 자이로스코프 센서 구동 회로, 3축의 가속도 감지 회로, 16bit sigma-delta ADC, 디지털 필터와 제어 회로로 구성되어 있다. 본 IC은 TSMC $0.18{\mu}m$ mixed signal CMOS공정으로 개발되었으며, STM사의 6축 관성 센서인 LSM330의 소비전류 6.1mA보다는 약 27% 낮은 4.5mA의 소비 전류로 동작한다.

Recently, inertial sensors are popularly used for the location and position recognition of small devices for M2M/IoT. In this paper, we designed low power, low noise, small sized 6-axis inertial sensor IC for mobile applications, which uses a 3-axis piezo-electric gyroscope sensor and a 3-axis piezo-resistive accelerometer sensor. Proposed IC is composed of 3-axis gyroscope readout circuit, two gyroscope sensor driving circuits, 3-axis accelerometer readout circuit, 16bit sigma-delta ADC, digital filter and control circuit and memory. TSMC $0.18{\mu}m$ mixed signal CMOS process was used. Proposed IC reduces 27% of the current consumption of LSM330.

키워드

참고문헌

  1. S. E. Alper and T. Akin, "A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate," J. Microelectromech. Syst., vol. 14, no. 4, pp. 707-717, Aug. 2005. https://doi.org/10.1109/JMEMS.2005.845400
  2. S. E. Alper, Y. Temiz, and T. Akin, "A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope," J. Microelectromech. Syst., vol. 17, no. 6, pp. 1418-1429, Dec. 2008. https://doi.org/10.1109/JMEMS.2008.2007274
  3. X. Wu, L. Xie, J. Xing, P. Don, H. Wang, and J. Su, "A z-axis quartz tuning fork micromachined gyroscope based on shear stress detection," IEEE Sensors J., vol. 12, no. 5, pp. 1246-1252, May 2012. https://doi.org/10.1109/JSEN.2011.2163626
  4. A. Sharma, M. F. Zaman, and F. Ayazi, "A sub-$0.2^{\circ}$/hr bias drift micromechanical silicon gyroscope with automatic CMOS modematching," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1593-1608, May 2009. https://doi.org/10.1109/JSSC.2009.2016996
  5. L. Aaltonen and K. A. I. Halonen, "Pseudocontinuous- time readout circuit for a $300^{\circ}$/s capacitive 2-axis micro-gyroscope," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3609-3620, Dec. 2009. https://doi.org/10.1109/JSSC.2009.2035554
  6. L. Aaltonen, A. Kalanti, M. Pulkkinen, M. Paavola, M. Kamarainen, and K. A. I. Halonen, "A 2.2mA 4.3$mm^2$ ASIC for a $1000^{\circ}$/s 2-axis capacitive micro-gyroscope," IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1682-1692, Jul. 2011. https://doi.org/10.1109/JSSC.2011.2144170
  7. H. Sun, K. Jia, X. Liu, G. Yan, Y. Hsu, R. M. Fox, and H. Xie, "A CMOS-MEMS gyroscope interface circuit design with high gain and low temperature dependence," IEEE Sensors J., vol. 11, no. 11, pp. 2740-2748, Nov. 2011.
  8. S. Gunthner, K. Kapser, M. Rose, B. Hartmann, M. Kluge, U. Schmid, and H. Seidel, "Analysis of piezo-resistive read-out signals for a silicon tuning fork gyroscope," in Proc. IEEE, vol. 3, pp. 1411-1414, Oct. 2004.
  9. O. Aydin and T. Akin, "A bulk-micromachined fully differential MEMS accelerometer with split interdigitated fingers," IEEE Sensors J., vol. 13, no. 8, pp. 2914-2921, Aug. 2013. https://doi.org/10.1109/JSEN.2013.2264667
  10. M.-H. Tsai, Y.-C. Liu, and W. Fang, "A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes," J. microelectromech. Syst., vol. 21, no. 6, pp. 1329-1337, Dec. 2012. https://doi.org/10.1109/JMEMS.2012.2205904
  11. H. Sun, D. Fang, K. Jia, F. Maarouf, H. Qu, and H. Xie, "A low-power low-noise dual -chopper amplifier for capacitive CMOSMEMS accelerometers," IEEE Sensors J., vol. 11, no. 4, pp. 925-933, Apr. 2011. https://doi.org/10.1109/JSEN.2010.2064296