DOI QR코드

DOI QR Code

Facile Preparation of Pyrene-templated Hexagonal-shaped Gold Nanoplates

  • Lim, Eun-Kyung (Department of Radiology, Yonsei University) ;
  • Jang, Eunji (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Haam, Seungjoo (YUHS-KRIBB Medical Convergence Research Institute) ;
  • Huh, Yong-Min (Department of Radiology, Yonsei University)
  • Received : 2014.01.07
  • Accepted : 2014.01.21
  • Published : 2014.01.30

Abstract

We have formulated hexagonal-shaped gold nanoplates in a single-step for photothermal therapy that gold ions to gold particles using pyrenyl dextran as reducible stabilizer and template. They exhibit anisotropic structure with broad surface plasmon resonance (SPR) band into near-infrared (NIR) spectrum enabling photothermal therapy. These gold nanoplates are also confirmed biocompatibility and high uptake efficiency due to binding with dextran molecules on the surface of gold nanoplates and cells. From in vitro phtothermal ablation study under NIR laser, gold nanoplates have the potential to use as photothermal agents.

Keywords

References

  1. T. Soejima and N. Kimizuka, J. Am. Chem. Soc. 131, 1447, (2009).
  2. A. M. Gobin, E. M. Watkins, E. Quevedo, A. L. Colvin, J. L. West, Small 6, 745 (2010). https://doi.org/10.1002/smll.200901557
  3. J. E. Millstone, G. S. Metraux, and C. A. Mirkin, Adv. Funct. Mater. 16, 1209, (2006). https://doi.org/10.1002/adfm.200600066
  4. B. D. Busbee, S. O. Obare, and C. J. Murphy, Adv. Mater. 15, 414, (2003). https://doi.org/10.1002/adma.200390095
  5. A. J. Frank, N. Cathcart, K. E. Maly, V. Kitaev, and J. Chem. Educ. 87, 1098, (2010). https://doi.org/10.1021/ed100166g
  6. X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, Nat. Commun. 2:292, doi: 10.1038/ncomms1291 (2011).
  7. J. D. S. Newman and G. J. Blanchard, Langmuir 22, 5882 (2006). https://doi.org/10.1021/la060045z
  8. N. G. Bastus, J. Comenge, and V. Puntes, Langmuir 27, 11098 (2011). https://doi.org/10.1021/la201938u
  9. D. R. Bhumkar, H. M. Joshi, M. Sastry, and V. B. Pokharkar, Pharm. Res. 24, 1415 (2007). https://doi.org/10.1007/s11095-007-9257-9
  10. Y. Gao, A. Voigt, M. Zhou, and K. Sundmacher, Eur. J. Inorg. Chem. 24, 3769 (2008).
  11. N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, and L. M. Liz-Marzan, Langmuir 18, 3694 (2002) https://doi.org/10.1021/la025563y
  12. H. Yoo, J. E. Millstone, S. Li, J.-W. Jang, W. Wei, J. Wu, G. C. Schatz, and C. A. Mirkin, Nano. Lett. 9, 3038 (2009). https://doi.org/10.1021/nl901513g
  13. S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry. Nat. Mater. 3, 482 (2004) https://doi.org/10.1038/nmat1152
  14. Z. Guo, X. Fan, L. Liu, Z. Bian, C. Gu, Y. Zhang, N. Gu, D. Yang, and J. Zhang, J. Colloid. Interf. Sci. 348, 29 (2010). https://doi.org/10.1016/j.jcis.2010.04.013
  15. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, Biotechnol. Prog. 22, 577 (2006). https://doi.org/10.1021/bp0501423
  16. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, Chem. Mater. 17, 566 (2005). https://doi.org/10.1021/cm048292g
  17. Y. Sun, B. Mayers, and Y. Xia, Nano. Lett. 3, 675 (2003). https://doi.org/10.1021/nl034140t
  18. A. Leiva, C. Salidias, C. Quezada, A. Toro-Labbe, F. J. Espinoza-Beltran, M. Urzua, L. Gargallo, and D. Radic, Eur. Polym. J. 45, 3035 (2009). https://doi.org/10.1016/j.eurpolymj.2009.08.005
  19. T. H. Ha, H.-J. Koo, and B. H. Chung, J. Phys. Chem. C. 111, 1123 (2007).
  20. C. Xue, G. S. Metraux, J. E. Millstone, and C. A. Mirkin, J. Am. Chem. Soc. 130, 8337 (2008). https://doi.org/10.1021/ja8005258
  21. J. Zhang, W. Li, Y. Cheng, X. Zhang, and S. Huang, H. Ma. Mater. Chem. Phys. 119, 188 (2010). https://doi.org/10.1016/j.matchemphys.2009.08.038
  22. K. Hamamoto, H. Kawakita, K. Ohto, and K. Inoue, React. Funct. Polym. 69, 694 (2009). https://doi.org/10.1016/j.reactfunctpolym.2009.05.003
  23. X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Y. C. Boey, Q. Yan, P. Chen, and H. Zhang, J. Phys. Chem. C. 113, 10842 (2009). https://doi.org/10.1021/jp903821n
  24. X. Huang, S. Li, S. Wu, Y. Huang, F. Boey, C. L. Gan, and H. Zhang, Adv. Mater. 24, 979 (2012). https://doi.org/10.1002/adma.201104153
  25. C. Tan, X. Huang, and H. Zhang, Mater. Today 16, 1369 (2013).
  26. E. K. Lim, E. Jang, J. Kim, T. Lee, E. Kim, H. S. Park, J. -S. Suh, Y.-M. Huh, and S. Haam, J. Mater. Chem. 22, 17518 (2012). https://doi.org/10.1039/c2jm32277c
  27. J. Choi, J. Yang, E. Jang, J.-S. Suh, Y. -M. Huh, K. Lee, and S. Haam, Anti-Cancer Agent Me 11, 953 (2011). https://doi.org/10.2174/187152011797927599
  28. R. Choi, J. Yang, J. Choi, E. -K. Lim, E. Kim, J. -S. Suh, Y. -M. Huh, and S. Haam, Langmuir 26, 17520, (2010). https://doi.org/10.1021/la1029728
  29. J. Choi, J. Yang, D. Bang, J. Park, J. -S. Suh, Y. -M. Huh, and S. Haam, Small 8, 746 (2012). https://doi.org/10.1002/smll.201101789
  30. Y. Shao, Y. Jin, and S. Dong, Chem. Comm. 2004, 1104 (2004).
  31. J. Gao, C. M. Bender, and C. J. Murphy, Langmuir 19, 9065 (2003). https://doi.org/10.1021/la034919i
  32. Y. N. Tan, J. Y. Lee, and D. I. C. Wang, J. Phys. Chem. C. 112, 5463 (2008). https://doi.org/10.1021/jp800501k
  33. M. N. Rylander, Y. Feng, J. Bass, and K. R. Diller, Ann. N. Y. Acad. Sci. 1066, 222 (2005). https://doi.org/10.1196/annals.1363.009