DOI QR코드

DOI QR Code

퍼지 집합을 활용한 건물 사전 보수작업 대상 선정 지원모델

Fuzzy-based Decision Support Model for Determining Preventive Maintenance Works Order

  • Ko, Taewoo (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Park, Moonseo (Department of Architectural Engineering, Seoul National University) ;
  • Lee, Hyun-Soo (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Kim, Hyunsoo (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Kim, Sooyoung (Department of Architecture and Architectural Engineering, Seoul National University)
  • 투고 : 2013.07.08
  • 심사 : 2013.10.14
  • 발행 : 2014.01.31

초록

건물의 사전 보수작업은 시설물이 제 기능을 발휘할 수 있도록 성능을 유지하고 향후에 발생할 수 있는 결함을 미연에 방지할 수 있다는 점에서 관심과 중요성이 증가하고 있다. 효과적인 사전 보수작업 수행을 위해 보수작업이 필요한 대상을 명확히 선정해야 하며 이를 위해 작업 대상이 가지는 상태에 대한 정확한 분석과 평가가 선행되어야 한다. 작업 대상의 성능 측정은 하나의 평가 기준에 대한 평가 보다는 여러 개의 평가 기준들을 동시에 고려한 평가가 측정의 정확성을 향상시킬 수 있다. 하지만 의사결정자의 주관적인 판단에 의해 측정값이 부정확한 평가 기준들이 존재할 수 있다. 이를 보완하고자 본 연구는 다양한 평가 기준을 이용한 사전 보수작업 대상의 성능 측정과 효과적인 작업 대상 선정을 위한 의사결정 지원 모델을 제시한다. 본 연구는 작업 대상 선정을 위한 평가 기준을 선정하고 기준별로 측정값을 종합하여 의사결정 과정에서 활용할 수 있도록 한다. 또한 건물의 상태 측정 시, 평가자의 주관적인 판단의 애매함으로 인해 발생하는 결과의 불확실성을 보완하고자 퍼지 집합을 사용하여 측정을 실시한다. 본 연구를 통해 의사결정자는 보수작업 대상 선정 과정에서 객관적인 평가를 위한 도구로 활용할 수 있다. 또한 본 모델은 의사결정자의 주관적인 의도에 따른 다양한 절충값을 얻을 수 있어, 의사결정자별 상이한 평가 방식을 반영할 수 있다.

Preventive maintenance of buildings has increased the importance of interest in that it is able to maintain the performance building has and to prevent a problem occurred in future. For improved preventive maintenance work, it should be performed to select works order clearly and preceded the accurate measurement for the state of works order. when measuring the conditions, measurement of the state of work order considering the various criteria is more effective than to measure by only criterion. But, there are something hard to evaluate exactly between the criteria because of decision-maker's subjective judgments. To solve these problems, this research proposes decision making support model to determine preventive maintenance works order using Fuzzy-sets. By using Fuzzy-sets when measuring state of work objects, it can be reduced vagueness of judgments by decision-makers. This model can be used as a tool for objective evaluation of preventive maintenance work orders and offer the guideline to perform decision-making.

키워드

참고문헌

  1. Amaratunga, D., Baldry, D. and Sarshar, M. (2000) "Assessment of facilities management performance-what next?", Facilities, 18(1), pp. 66-75. https://doi.org/10.1108/02632770010312187
  2. Baloi, D. and Price A, D. (2003) "Modelling global risk factors affecting construction cost performance" International Journal of Project Management 21(4), pp. 261-269. https://doi.org/10.1016/S0263-7863(02)00017-0
  3. Bashiri, M., Badri, H. and Hejazi, T.H. (2001). "Selecting optimum maintenance strategy by fuzzy interactive linear assignment method." Applied Mathematical Modelling, 35(1), pp. 152-164.
  4. Caccavelli, D., and Genre, J. L. (2000). "Diagnosis of the degradation state of building and cost evaluation of induced refurbishment works" Energy and Buildings, 31(2), pp. 159-165. https://doi.org/10.1016/S0378-7788(99)00030-4
  5. Chang, D. Y. (1996). "Applications of the extent analysis method on fuzzy AHP." European Journal of Operations Research, 95(3), pp. 649-655. https://doi.org/10.1016/0377-2217(95)00300-2
  6. Douglas, J. (1996) "Building performance and its relevance to facilities management", Facilities, 14(3), pp. 23-32.
  7. Eweda. A., Zayed. T and Alkass. S (2010) "An Integrated Condition Assessment Model for Buildings", Construction Research Congress 2010 Banff, Alberta, 8-10 May, pp. 1386-1395.
  8. Moodi, F. and Knapton. J. (2003) "Research into a management system for Diagnosis, Maintenance, and repair of concrete Structures" Journal of Construction Engineering and Management, 129(5) pp. 555-561. https://doi.org/10.1061/(ASCE)0733-9364(2003)129:5(555)
  9. Hao. Q. et. al., (2010), "A decision support system for integrating corrective maintenance, preventive maintenance and condition-based maintenance.", Proceedings of Construction Research congress 2010. pp.8-11.
  10. Hipel, K. W., Radford k. J. and Fang L. (1993) "Multiple participant-multiple criteria decision making", System, Man and Cybermetrics, 23(4), pp. 1184-1189.
  11. Jo, H., Jeong, J., Jung, J., and Lee, C. (2012). "Fuzzy based condition assessment model of middle and small-size buildings", Korean Journal of Construction Enginnering and Management, 13(5), pp. 35-44. https://doi.org/10.6106/KJCEM.2012.13.5.035
  12. Kant, J. K. and Battacharjee, B. (2012) "Application of Fuzzy Concepts to the Visual assessment of deteriorating reinforced concrete structures", Journal of Construction Engineering and Management, 138(3), pp. 399-408. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000430
  13. Karwowski, W., and Mital, A. (1986) "Applications of fuzzy set theory in human factors" Vol. 6. Elsevier Science Ltd.
  14. Kaya, T. and Kahraman, C. (2010). "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: the case of Istanbul." Energy, 35(6), pp. 2517-2527. https://doi.org/10.1016/j.energy.2010.02.051
  15. Klir, G. J., and Yuan, B. (1995) "Fuzzy sets and fuzzy logic", New jersey Prentice Hall.
  16. Lavy, S. and Bilbo, D. L. (2009). "Facilities maintenance management practices in large public schools, Texas." Facilities, 27(1), pp. 5-20. https://doi.org/10.1108/02632770910923054
  17. Lee, D. and Kim, Y. (2003). "A study on the Decision Making Model for Construction Projects using Fuzzy-AHP and Fuzzy-Delph", Korean Journal of Construction Enginnering and Management, 4(1), pp. 81-89.
  18. Lee, M. (2009) "A study on the development of building performance evaluation model", Journal of Architectural Institute of Korea, 25(2), pp. 13-20
  19. Lin, C. T. and Chen. Y. T. (2004) "Bid/no-bid decision making-a fuzzy linguistic approach" International Journal of Project Management, 22(7), pp. 585-593. https://doi.org/10.1016/j.ijproman.2004.01.005
  20. Lind, H. and Muyingo, H. (2012). "Building maintenance strategies: planning under uncertainty." Property Management, 30(1), pp. 14-28. https://doi.org/10.1108/02637471211198152
  21. Mandani, E. H. (1977) "Application of fuzzy logic to approximate reasoning using linguistic synthesis," Computers., 100(12), pp. 1182-1191.
  22. Opricovic, S. (1998) "Multicriteria Optimization in Civil Engineering" Faculty of Civil engineering. Belgrade.
  23. Opricovic, S. (2011). "Fuzzy VIKOR with an application to water resources planning." Expert Systems with Applications, 38(10), pp. 12983-12990. https://doi.org/10.1016/j.eswa.2011.04.097
  24. Opricovic, S. and Tzeng, G. H. (2004) "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS" European Journal of Operational Research, 156(2), pp. 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1
  25. Oyedele, L., Tham, K., Fadeyi, M., and Jaiyeoba, B. (2012). "Total Building Performance Approach in Building Evaluation: Case Study of an Office Building in Singapore." Journal of Energy Engineering, 138(1), 25-30. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000056
  26. Percy, D. F., & Kobbacy, K. A. (2000). "Determining economical maintenance intervals". International Journal of Production Economics, 67(1), pp. 87-94 https://doi.org/10.1016/S0925-5273(00)00013-X
  27. Pitt, T. J. (1997). "Data requirements for the prioritization of predictive building maintenance", Facilities, 15(3) pp. 97-104. https://doi.org/10.1108/02632779710160612
  28. Reddy, P. V., Socur, M. and Ariaratnam, S. T. (1993), "Building renovation decision support model", In Computing in Civil and Building Engineering, pp. 1547-1554
  29. Shohet, I. M., Lavy-Leibovich, S., & Bar-On, D. (2003). "Integrated maintenance monitoring of hospital buildings" Construction Management and Economics, 21(2), pp. 219-228. https://doi.org/10.1080/0144619032000079734
  30. Shen, Q., and Spedding, A. (1998). "Priority setting in planned maintenance-practical issues in using the multi-attribute approach". Building Research and Information, 26(3), pp. 169-180. https://doi.org/10.1080/096132198369940
  31. Silva, N. de., Dulaimi, M. F.,Ling, F. Y. and Ofori, G. (2004) "Improving the maintainability of buildings in Singapore" Building and environment, 39(10), pp. 1243-1251. https://doi.org/10.1016/j.buildenv.2004.02.011
  32. Singh, D. and Tiong, R. L. K. (2005) "A Fuzzy Decision Framework for Contractor Selection", Journal of Construction Engineering and Management, 131(1), pp. 62-70. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:1(62)
  33. Walczak, B., and Massart, D. L. (1999) "Rough sets theory", Chemometrics and intelligent laboratory systems, 47(1), pp. 1-16. https://doi.org/10.1016/S0169-7439(98)00200-7
  34. Wang, T. C., Liang, L. J. and Ho, C. Y. (2006). "Multi-criteria decision analysis by using fuzzy VIKOR." Proceedings of International Conference on Service Systems and Service Management, Troyes, pp.901-906.
  35. Williams, B. (1993) ""What a performance!", Property Management, 11(3), pp. 190-91.
  36. Zadeh, L. A. (1965). "Fuzzy sets", Information and Control, 8(3) pp. 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X