DOI QR코드

DOI QR Code

Comparison of Various Single Chemical Extraction Methods for Predicting the Bioavailability of Arsenic in Paddy Soils

  • Go, Woo-Ri (Chemical Safety Division, National Academy of Agricultural Science, RDA) ;
  • Jeong, Seon-Hee (Chemical Safety Division, National Academy of Agricultural Science, RDA) ;
  • Kunhikrishnan, Anitha (Chemical Safety Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Gyeong-Jin (Chemical Safety Division, National Academy of Agricultural Science, RDA) ;
  • Yoo, Ji-Hyock (Chemical Safety Division, National Academy of Agricultural Science, RDA) ;
  • Cho, Namjun (Chemical Safety Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Kwon-Rae (Department of Agronomy and Medicinal Plant Resources, GNTECH) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, University of Seoul) ;
  • Kim, Won-Il (Chemical Safety Division, National Academy of Agricultural Science, RDA)
  • Received : 2014.10.17
  • Accepted : 2014.11.22
  • Published : 2014.12.31

Abstract

The Codex Committee of Contaminants in Food (CCCF) has been discussing a new standard for arsenic (As) in rice since 2010 and a code of practice for the prevention and reduction of As contamination in rice since 2013. Therefore, our current studies focus on setting a maximum level of As in rice and paddy soil by considering bioavailability in the remediation of As contaminated soils. This study aimed to select an appropriate single chemical extractant for evaluating the mobility of As in paddy soil and the bioavailability of As to rice. Nine different extractants, such as deionized water, 0.01 M $Ca(NO_3)_2$, 0.1 M HCl, 0.2 M $C_6H_8O_7$, 0.43 M $HNO_3$, 0.43 M $CH_3COOH$, 0.5 M $KH_2PO_4$, 1 M HCl, and 1 M $NH_4NO_3$ were used in this study. Total As content in soil was also determined after aqua regia digestion. The As extractability of the was in the order of: Aqua regia > 1 M HCl > 0.5 M $KH_2PO_4$ > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.1 M HCl > 0.43 M $CH_3COOH$ > deionized water > 1 M $NH_4NO_3$ > 0.01 M $Ca(NO_3)_2$. Correlation between soil extractants and As content in rice was in the order of : deionized water > 0.01 M $Ca(NO_3)_2$ > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.5 M $KH_2PO_4$ > 1 M $NH_4NO_3$ > 0.2 M $C_6H_8O_7$ > 0.43 M $HNO_3$ > 1M HCl > Aqua regia. BCF (bioconcentration factor) according to extractants was in the order of : 0.01M $Ca(NO_3)_2$ > 1 M $NH_4NO_3$ > deionized water > 0.43 M $CH_3COOH$ > 0.1 M HCl > 0.43 M $HNO_3$ > 0.2 M $C_6H_8O_7$ > 0.5 M $KH_2PO_4$ > 1 M HCl > Aqua regia. Therefore, 0.01 M $Ca(NO_3)_2$ ($r=0.78^{**}$) was proven to have the greatest potential for predicting As bioavailability in soil with higher correlation between As in rice and the extractant.

Keywords

References

  1. Alam, M.G.M., S. Tokunaga, and T. Maekaea. 2001. Extraction of arsenic in a synthetic arsenic contaminated soil using phosphate. Chemosphere 43:1035-1041. https://doi.org/10.1016/S0045-6535(00)00205-8
  2. Amofah, L.R., C. Maurice, and P. Bhattacharya. 2010. Extraction of arsenic from soils contaminated with wood preservation chemicals. Soil Sediment Contam. 19:142-159. https://doi.org/10.1080/15320380903390539
  3. Bhattacharya, P., B.M. Arun, J. Gunnar, and N. Sune. 2002. Metal contamination at a wood preservation site: characterisation and experimental studies on remediation. Sci. Total Environ. 290:165-180. https://doi.org/10.1016/S0048-9697(01)01073-7
  4. Bolan, N.S., A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J.H. Park, T. Makino, M.B. Kirkham, and K. Scheckel. 2014. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? J. Hazard. Mater. 266:141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018
  5. Brun, L.A., J. Maillet, J. Richarte, P. Herrmann, and J.C. Remy. 1998. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils, Environ. Pollut. 102:151-161. https://doi.org/10.1016/S0269-7491(98)00120-1
  6. CLEA. 1998. The Contaminated Land Exposure Assessment Model (CLEA); Technical basis and algorithms. Report prepared for the Department of Environment, Transport, and the Region and the Environment Agency.
  7. DIN (Deutsches Institue fur Normung). 1995. Soil quality extraction of trace elements with ammonium nitrate solution. DIN 19730. Beuth Verlag, Berlin, Germany.
  8. Elliott, H. A. and N.L. Shastri. 1999. Extraction decontamination of metal polluted soils using oxalate. Water Air Soil Pollut. 110:335-346. https://doi.org/10.1023/A:1005067404259
  9. FAO/WHO. 2014. Report of the eighth session of the Codex committee on contaminants in foods.
  10. Fu, Y., M. Chen, X. Bi, Y. He, L. Ren, W. Xiang, S. Qiao, S. Yan, Z. Li, and Z. Ma. 2011. Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan island, China. Environ. Pollut. 159:1757-1762. https://doi.org/10.1016/j.envpol.2011.04.018
  11. Geebelen, W., J. Vangronsveld, D.C. Adriano, R. Carleer, and H. Clijsters. 2002. Amendment-induced immobilization of lead in a lead-spiked soil: evidence from phytotoxicity studies. Water Air Soil Pollut. 140:261-277. https://doi.org/10.1023/A:1020147901365
  12. Giri, P.K., K. Bhattacharyya, B. Sinha, and D. Mazumdar. 2012. Study of the suitability of selected extractants for determination of plant-available arsenic in some inceptisols of West Bengal, India. Commun. Soil Sci. Plant Anal. 43:2449-2466. https://doi.org/10.1080/00103624.2012.711869
  13. Gonzaga, M.I.S., L.Q. Ma, E.P. Pacheco, and W.M. dos Santos. 2012. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils. Inter. J. Phytoremed. 14: 939-949. https://doi.org/10.1080/15226514.2011.636404
  14. Heemsbergen, D.A., M.S.J. Warne, K. Broos, M. Bell, D. Nash, M. McLaughlin, M. Whatmuff, G. Barry, D. Pritchard, and N. Penney. 2009. Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Sci. Total Environ. 407:2546-2556. https://doi.org/10.1016/j.scitotenv.2009.01.016
  15. Itanna, F., J. Breuer, and M. Olsson. 2008. The fate and bioavailability of some trace elements applied to two vegetable farms in Ethiopia. African J. of Agri. Research 3(11):797-807.
  16. Jung, G.B., W.I. Kim, K.H. Moon, and I.S. Yoo. 2000. Comparison of simple extraction methods and availability for heavy metals in paddy soils. Korean J. Environ. Agric. 19(4):314-318.
  17. KFDA, 2000. The criteria of Cd in polished rice. Korean Food and Drug Administration.
  18. KFDA, 2011. Food Sanitation Law. Korea Food and Drug Administration.
  19. Kim, W.I., J.E. Yang, G.B. Jung, B.J. Park, S.W. Park, J.K. Kim, O.K. Kwon, and G.H. Ryu. 2007. Bioavailability and safety issues of heavy metals in paddy soil-rice continuum in Korea. FFTC Extension Bulletin 597:1-14
  20. Kim, K.R., G. Owens, and R. Naidu. 2009. Heavy metal distribution, bioaccessibility and phytoavailability in long-term contaminated soils from lake Macquarie, Australia. Aust. J. Soil Res. 47(2):166-176. https://doi.org/10.1071/SR08054
  21. Kim, K.R., J.G. Kim, J.S. Park, M.S. Kim, G. Owens, G.H. Youn, and J.S. Lee. 2012a. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. J. Environ. Manage. 102:88-95. https://doi.org/10.1016/j.jenvman.2012.02.001
  22. Kim, J.Y., J.H. Lee, A. Kunhikrishnan, D.W. Kang, M.J. Kim, J.H. Yoo, D.H. Kim, Y.J. Lee, and W.I. Kim. 2012b. Transfer factor of heavy metals from agricultural soil to agricultulral products. Korean J. Environ. Agric. 31(4):300-307. https://doi.org/10.5338/KJEA.2012.31.4.300
  23. Kim, J.Y., W.I. Kim, A. Kunhikrishnan, D.W. Kang, D.H. Kim, Y.J. Lee, Y.J. Kim, and C.T. Kim. 2013. Determination of arsenic species in rice grains using HPLC-ICP-MS. Food Sci. Biotechnol. 22(6):1509-1513. https://doi.org/10.1007/s10068-013-0245-z
  24. Krishnamurti, G.S.R., and R. Naidu. 2000. Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Aust. J. Soil Res. 38:991-1004. https://doi.org/10.1071/SR99129
  25. Lee, J.H., J.Y. Kim, W.R. Go, E.J. Jeong, A. Kunhikrishnan, G.B. Jung, D.H. Kim, and W.I. Kim. 2012. Current research trends for heavy metals of agricultural soils and uptake in Korea. Korean J. Environ. Agric. 31:75-95. https://doi.org/10.5338/KJEA.2012.31.1.75
  26. Mackovych, D., S. Cicmanova, and S. Pramuka. 2003. Forms of selected toxic elements. Partial final report of the project "Evaluation of the potential influence of geochemical environment on the health of the population in the Spis Gemer Ore Mountains". Bratislava:SGUDS. 55
  27. McLaughlin, M.J., R.E. Hanmon, R.G. MacLaren, T.W. Speir, and S.L. Rogers. 2000. Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand, Aust. J. Soil Resh. 38:1037-1086. https://doi.org/10.1071/SR99128
  28. MOE, 1996. Soil environment conservation Act. Minister of Environment.
  29. MOE, 2002. Soil environment conservation Act. Minister of Environment.
  30. MOE, 2007-2009. Annual report on the detailed survey of soil contamination near closed metal mine. Ministry of Environment.
  31. MOE, 2010a. Soil environment conservation Act. Minister of Environment.
  32. MOE, 2010b. Standard test method for soil pollution. Ministry of Environment.
  33. Naidu, R., N.S. Bolan, R.S. Kookana, and K.G. Tiller. 1994. Ionic-strengh and pH effects on the sorption of cadmium and the surface charge of soils. European J. Soil Sci. 45:419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
  34. Naidu, R., S. Rogers, V.V.S.R. Gupta, R.S. Kookana, N.S. Bolan, and D.C. Adriano. 2003. Bioavailability of metals in the soil plant environment and its potential role in risk assessment, in: Naidu, R., Rogers, S., Gupta, V.V.S.R., Kookana, R.S., Bolan, N.S., Adriano, D.C. (Eds). Bioavailability toxicity and risk relationships in ecosystems. Sci. Publishers Inc. New hampshire.
  35. NIAST (National Institute of Agricultural Science and Technology). 2000. Analytical methods of soil and plant.
  36. Otte, P.F., J.P.A. Lijzen, J.G. Otte, F.A. Swartjes and C.W. Versluijs. 2001. Evaluation and revision of the CSOIL parameter set; Proposed parameter set for human exposure modelling and deriving Intervention Values for the first series of compounds. RIVM report 711701021.
  37. Quevauviller, P., G. Rauret, A. Ure, J. Bacon, and H. Muntau. 1997. The certification of the EDTA and acetic acid extractable contents(mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in sewage sludge amended soils. CRM 483 and 484. Report EUR 17127 EN. Brussels: European Commission.
  38. RDA (Rural Development Administration). 2011. Annul report of the monitoring project on agro-environmental quality.
  39. Ruby, M.W., A. Davis, T.E. Link, R. Schoof, R.L. Chaney, G.B. Freeman, and P. Bergstrom. 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ. Sci. Technol. 27(13):2870-2877. https://doi.org/10.1021/es00049a030
  40. Salazar, M.J., J.H. Rodriguez, G.L. Nieto, and M.L. Pignata. 2012. Effects of heavy metal concentrations(Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean Glycine max (L.) Merrill. J. Hazard. Mater. 233-234, 244-253. https://doi.org/10.1016/j.jhazmat.2012.07.026
  41. Sauve, S., W. Hendershot, and H.E. Allen. 2000. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Tech. 34(7):1125-1131. https://doi.org/10.1021/es9907764
  42. Savie, S., N. Cook, W.H. Hendershot, M.B. McBride. 1996. Linking plant tisuue contaminated soils, Environ. Pollut. 94:153-157. https://doi.org/10.1016/S0269-7491(96)00081-4
  43. Seo, B.H., G.H. Lim, K.H. Kim, J.E. Kim, J.H. Hur, W.I. Kim, K.R. Kim. 2013. Comparison of single extractions for evaluation of heavy metal phytoavailability in soil. Korean J. of Environ. Agric. 32(3): 171-178. https://doi.org/10.5338/KJEA.2013.32.3.171
  44. Shin, I.J. 2003. Translocation of heavy metals to some crops in paddy and upland soil around abandoned mines. Master Thesis. Chungnam National University, Korea.
  45. Stroud, J.L., M.A. Khan, G.J. Norton, M.R. Islam, T. Dasgupta, Y.G. Zhu, A.H. Price, A.A. Meharg, S.P. McGrath, and F.J. Zhao. 2011. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environ. Sci. Technol. 45:4262-4269. https://doi.org/10.1021/es104080s
  46. Tipping, E., J. Rieuwerts, G. Pan, M.R. Ashmore, S. Lofts, M.T.R. Hill, M.E. Farago, and I. Thornton. 2003. The solid- solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut. 125:213-225. https://doi.org/10.1016/S0269-7491(03)00058-7
  47. Tyurin, I.V. 1931. A new modification of the volumetric method of determining soil organic matter by means of chromic acid. Pochvovedenie 26:36-47.
  48. USEPA. 1992. Technical Support Document for the Land Application of Sewage Sludge.
  49. USEPA. 1996. Soil Screening Guidance: Technical Background Document Table Content.
  50. Yang, X., Q. Hou, Z. Yang, X. Zhang, and Y. Hou. 2012. Solid-solution partitioning of arsenic (As) in the paddy soil profiles in Chengdu plain, Southwest China. Geosci. Front.3:901-909. https://doi.org/10.1016/j.gsf.2012.03.006