Functional Properties of the Lycopene Cultivar of Cherry Tomato (Lycopersicon esculentum var. cerasiforme)

방울토마토 (Lycopersicon esculentum var. cerasiforme) 라이코펜 품종의 기능적 특성

  • Choi, Suk Hyun (Dept. of Food Service & Culinary Arts, Seowon University) ;
  • Ahn, Jun Bae (Dept. of Food Service & Culinary Arts, Seowon University)
  • 최석현 (서원대학교 호텔외식조리학과) ;
  • 안준배 (서원대학교 호텔외식조리학과)
  • Received : 2014.09.22
  • Accepted : 2014.12.05
  • Published : 2014.12.30

Abstract

This study was carried out to investigate the effectiveness of the Lycopene cultivar of cherry tomatoes as a functional food and food material by measuring the total polyphenol and flavonoid content, anti-oxidative and anticancer activity. The contents of polyphenol and flavonoid were $12.28{\pm}1.78mg$ and $3.89{\pm}0.54mg$ per one g of dried cherry tomatoes respectively. The anti-oxidative activity of the cherry tomato was verified by measuring ${\alpha}$-${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radical scavenging activity (DSA), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity (ASA) and ferric reducing antioxidant power (FRAP). 50% of radical scavenging concentrations ($IC_{50}$) of DSA and ASA were $328.64{\pm}4.190{\mu}g/mL$ and $350.61{\pm}3.300{\mu}g/mL$ respectively. FRAP value was $26.92{\pm}0.68{\mu}mol$ $Fe^{2+}/g$. The effects of the cherry tomato extract on the growth of a normal lung cell (Hel299), lung cancer cell (A549), cervical cancer cell (HeLa) and a liver cancer cell (HepG2) were investigated using MTT assay. The cherry tomato extract showed a significantly strong growth inhibition effects against A549 cell and $IC_{50}$ was $375.46{\pm}33.670{\mu}g/mL$. The extract also inhibited growths of HeLa and HepG2 cells weakly. In this study we found that Lycopene cultivar of cherry tomato had anti-oxidative activity and strong inhibition effect against lung cancer cells. These results indicate that the Lycopene cultivar of cherry tomato would be a functional food and food material.

본 연구에서는 방울토마토 라이코펜 품종의 기능성 식품 또는 식품 소재로서의 효용성을 알아보기 위하여 총 폴리페놀 및 플라보노이드 함량, 항산화 활성, 암세포 생육억제 효과를 검증하여 보았다. 방울토마토 라이코펜 품종의 폴리페놀 함량은 건조물 1 g당 $12.28{\pm}1.78mg$으로 국내산 일반 토마토와 유사하였으며, 플라보노이드는 건조물 1 g당 $3.89{\pm}0.54mg$이 함유되어 있어, 일반 토마토에 비해 4~6배 가량 높았다. 방울토마토 라이코펜 품종의 항산화 활성을 알아보기 위해 DPPH radical scavenging activity(DSA), ABTS radical scavenging activity(ASA) 및 Ferric reducing antioxidant power(FRAP)를 측정하였다. DSA와 ASA를 측정한 결과, 추출물의 농도가 증가함에 따라 유의적으로 라디칼 소거 활성이 증가하였으며, $IC_{50}$은 각각 $328.64{\pm}4.190{\mu}g/mL$, $350.61{\pm}3.30{\mu}g/mL$이었다. 또한, FRAP값은 $26.92{\pm}0.68{\mu}mol$ $Fe^{2+}/g$으로 밝혀져 방울토마토 라이코펜 품종은 항산화 활성이 있음이 확인되었다. 방울토마토 라이코펜 품종의 세포독성과 암세포 생육억제 효과를 검증한 결과, 폐암세포(A549)에 대해 강한 생육 억제 효과를 확인할 수 있었다. 방울토마토 라이코펜 추출물은 처리 농도가 증가함에 따라 유의적으로 A549 세포의 생육을 억제하였다. 추출물을 $500{\mu}g/mL$ 농도로 처리하였을 경우, 67.39%의 암세포 억제 효과를 보였으며, $IC_{50}$$375.46{\pm}33.67{\mu}g/mL$이었다. 또한, 방울토마토 라이코펜 추출물은 자궁경부암세포(HeLa)와 간암세포(HepG2)에 대해서도 약한 생육억제 효과를 보임을 확인할 수 있었다. 이상의 결과를 통해 방울토마토 라이코펜 품종은 기능성 식품 또는 식품 소재로서의 가치가 매우 높음이 확인되었다.

Keywords

References

  1. Agudo A, Esteve MG, Pallares C, Martinez-Ballarin I, Fabregat X, Malats N (1997). Vegetable and fruit intake and the risk of lung cancer in women in Barcelona, Spain. Eur J Cancer 33(8):1256-1261. https://doi.org/10.1016/S0959-8049(97)00050-6
  2. Barber NJ, Barber J (2002). Lycopene and prostate cancer. Prostate Cancer and Prostatic Diseases 5(1):6-12. https://doi.org/10.1038/sj.pcan.4500560
  3. Benzie IFF, Strain JJ (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem 239(1):70-76. https://doi.org/10.1006/abio.1996.0292
  4. Brand-Williams W, Cuvelier ME, Berset C (1995). Use of a free radical method of evaluates antioxidant activity. LWT-Food Sci Technol 28 (1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  5. Cetkovic G, Savatovic S, Canadanovic-Brunet J, Djilas S, Vulic J, Mandic A, Cetojevic-Simin D (2012). Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. Food Chem 133(3):938-945. https://doi.org/10.1016/j.foodchem.2012.02.007
  6. Choi SH, Kim HY, Kim HJ, Lee IS, Kozukue N, Levin CE, Friedman M (2011). Free amino acid and phenolic contents and antioxidative and cancer cell-inhibiting activities of extracts of 11 greenhouse-grown tomato varieties and 13 tomato-based foods. J Agric Food Chem 59 (24):12801-12814. https://doi.org/10.1021/jf202791j
  7. Choi SH, Lee SH, Kim HJ, Lee IS, Nobuyuki K, Levin CE, Friedman M (2010). Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J Agric Food Chem 58(13):7547-7556. https://doi.org/10.1021/jf100162j
  8. Davies JN, Hobson GE (1981). Constituents of tomato fruit-the influence of environment, nutrition, and genotype. CRC Crit Rev Food Sci Nutr 15(3):205-280. https://doi.org/10.1080/10408398109527317
  9. Dewanto V, Wu X, Adom KK, Liu RH (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50(10):3010-3014. https://doi.org/10.1021/jf0115589
  10. Friedman M (2002). Tomato glycoalkaloids : role in the plant and in the diet. J Agric Food Chem 50(21):5751-5780. https://doi.org/10.1021/jf020560c
  11. Friedman M, Levin CE, Lee SU, Kim HJ, Lee IS, Byun JO, Kozukue N (2009). Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J Agric Food Chem 57(13):5727-5733. https://doi.org/10.1021/jf900364j
  12. Frusciante L, Carli P, Ercolano MR, Pernice R, Di Matteo A, Fogliano V, Pellegrini N (2007). Antioxidant nutritional quality of tomato. Mol Nutr Food Res 51(5):609-617. https://doi.org/10.1002/mnfr.200600158
  13. Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995). Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 87(23):1767-1776. https://doi.org/10.1093/jnci/87.23.1767
  14. Giovannucci E (1999). Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J Natl Cancer Inst 91 (4):317-331. https://doi.org/10.1093/jnci/91.4.317
  15. Goodman MT, Hankin JH, Wilkens LR, Kolonel LN (1992). High-fat foods and the risk of lung cancer. Epidemiology 3(4):288-299. https://doi.org/10.1097/00001648-199207000-00004
  16. Hirai S, Kim YI, Goto T, Kang MS, Yoshimura M, Obata A, Yu R, Kawada T (2007). Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci 81(16):1272-1279. https://doi.org/10.1016/j.lfs.2007.09.001
  17. Horiba T, Nishimura I, Nakai Y, Abe K, Sato R (2010). Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Mol Cellular Endocrinol 323(2):208-214. https://doi.org/10.1016/j.mce.2010.03.020
  18. Hwang ES, Bowen PE (2004). Effects of tomatoes and lycopene on prostate cancer prevention and treatment. J Korean Soc Food Sci Nutr 33 (2):455-462. https://doi.org/10.3746/jkfn.2004.33.2.455
  19. Iwamura C, Shindoda K, Yoshimura M, Watanabe Y, Obata A, Nakayama T (2010). Naringenin chalcone suppresses allergic asthma by inhibitiong the Type-2 function of CD4 T cells. Allergol Int 59(1):67-73. https://doi.org/10.2332/allergolint.09-OA-0118
  20. Jung CH, Cho CH, Kim CJ (2007). Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch Pharmacal Research 30(12):1599-1607. https://doi.org/10.1007/BF02977330
  21. Kim HY, Ahn JB (2014). Analysis of free amino acids and polyphenol compounds from Lycopene variety of cherry tomato. Korean J Culinary Research 20(3):37-49.
  22. Kim SJ, Kim JY, Chang YE (2012). Physiological activites of saccharified cherry tomato gruel containing different levels of cherry tomato puree. Korean J Food Cookery Sci 28(6):773-779. https://doi.org/10.9724/kfcs.2012.28.6.773
  23. Lee HB, Yang CB, Yu TJ (1972). Studies on the chemical composition of some fruit vegetables and fruits in Korea(I). Korean J Food Sci Technol 4(1):36-43.
  24. Lenucci MS, Cadinu D, Taurino M, Piro G, Dalessandro G (2006). Antioxidant composition in cherry and high-pigment tomato cultivars. J Agric Food Chem 54(7):2606-2613. https://doi.org/10.1021/jf052920c
  25. Mayne ST, Janerich DT, Greenwald P, Chorost S, Tucci C, Zaman MB (1994). Dietary beta carotene and lung cancer risk in U.S. nonsmokers. J Natl Cancer Inst 86(1):33-38. https://doi.org/10.1093/jnci/86.1.33
  26. Metodiewa D, Kochman A, Karolczak S (1997). Evidence for antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavaone oximes: A comparison with natural polyphenolic flavonoid rutin action. IUBMB Life 41(5):1067-1075. https://doi.org/10.1080/15216549700202141
  27. Morales-Soto A, Garcia-Salas P, Rodriguez-Perez C, Jimenez-Sanchez C, Cadiz-Gurrea M, Segura-Carretero A, Fernadez-Gutierrez A (2014). Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Research International 58(1):35-46. https://doi.org/10.1016/j.foodres.2014.01.050
  28. Na HS, Kim JY, Yun SH, Park HJ, Choi GC, Yang SI, Lee JH, Gho JY (2013). Phytochemical contents of agricultural products cultivated by region. Korean J Food Preserv 20(4):451-458. https://doi.org/10.11002/kjfp.2013.20.4.451
  29. Na YP, Lee SM, Roh KS (2007). Biochemical characterization of lectin isolated from cherry tomato. J Life Sci 17(2):254-259. https://doi.org/10.5352/JLS.2007.17.2.254
  30. Navarro-Nunez L, Lozano ML, Palomo M, Martinez C, Vicente V, Castillo J, Benavente-Garcia O, Diaz-Ricart M, Escolar G, Rivera J (2008). Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway. J Agric Food Chem 56(9):2970-2976. https://doi.org/10.1021/jf0723209
  31. Oshima S, Ojima F, Sakamoto H, Ishiguro Y, Terao J (1998). Supplementation with carotenoids inhibits singlet oxigen-mediated oxidation of human plasma low-density lipoprotein. J Agric Food Chem 44(8):2306-2309.
  32. Polazza P, Simone RE, Catalano A, Mele MC (2011) Tomato lycopene and lung cancer prevention: From experimental to human studies. Cancers 3(2):2333-2357. https://doi.org/10.3390/cancers3022333
  33. Raffo A, Malfa GL, Fogliano V, Maiani G, Quaglia G (2006). Seasonal variations in antioxidant components of cherry tomatos(Lycopersicon esculentum cv. Naomi F1). J Food Comp Anal 19(1):11-19. https://doi.org/10.1016/j.jfca.2005.02.003
  34. Rha YA, Choi MS, Park SJ (2014). Antioxidant and anti-adipogenic effects of fermented Rhus verniciflua. Korean J Culinary Research 20 (3):137-147.
  35. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9/10):1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  36. Roh KS (2010). Antifungal activity and biochemical characterization of lectin isolated locular fluid of cherry tomato fruit. KSBB Journal 25(3):289-296.
  37. Stahl W, Heinrich U, Wiseman S, Eichler O, Sies H, Tronnier H (2001). Dietary tomato paste protects against ultraviolet light-induced erythema in human. J Nutr 131(5):1449-1451. https://doi.org/10.1093/jn/131.5.1449
  38. Yamamoto T, Yoshimura M, Yamaguchi F, Kouchi T, Tsuji R, Saito M, Obata A, Kikuchi M (2004). Anti-allergic activity of naringenin chalcone from a tomato skin extract. Biosci Biotechnol Biochem 68(8):1706-1711. https://doi.org/10.1271/bbb.68.1706