DOI QR코드

DOI QR Code

4경간 현수교에서의 중앙주탑 휨강성의 영향

Effects of Flexural Rigidity of Center Tower in Four-Span Suspension Bridges

  • 권순길 (한양대학교 건설환경공학과) ;
  • 유훈 (현대건설 연구개발본부) ;
  • 최동호 (한양대학교 건설환경공학과)
  • 투고 : 2013.07.02
  • 심사 : 2013.09.10
  • 발행 : 2014.02.01

초록

해협횡단 교량으로서 적용사례가 증가될 것으로 예상되는 다경간 현수교에 대한 거동을 간략하면서도 정확히 해석하기 위하여, 현수교에 대한 고유의 해석이론인 처짐이론 해석방법을 사용할 수 있다. 본 연구에서는 처짐이론 방법을 이용한 4경간 현수교의 구조해석을 수행하였다. 거더를 축인장력을 받는 단순보로 고려하였고, 연직방향 하중 및 지점부 모멘트에 의한 단순보의 수직변위를 산정하여, 이 변위가 케이블의 적합방정식을 만족할 때까지 반복해석을 수행하였다. 유한요소해석의 결과와 비교하여 모든 주탑의 휨강성을 고려하는 처짐이론 해석의 결과를 검증하고, 주케이블과 탑정부 간의 구속조건 변화에 따른 다양한 케이블 적합방정식을 이용하여, 4경간 현수교에서의 주탑 휨강성의 중요성을 확인하였다. 또한 중앙주탑 휨강성의 변화에 따른 간단한 변수해석을 수행하여 그에 따른 거동을 파악하였다.

For simple and accurate analysis for behaviors of multi-span suspension bridges which are expected to be frequently constructed as strait-crossing bridges, the deflection theory as the peculiar theory of a suspension bridge can be applied. This paper performs a structural analysis for four-span suspension bridges using the deflection theory. Simply-supported beams with tension are used for girders and the deflections of the beams due to the vertical loads and moments at supports are calculated. The calculation is performed iteratively until the deflections satisfy the compatibility equations of cables. The results of the deflection theory analysis considering tower rigidity are compared with those of the finite element analysis for verification. Importance of the tower rigidity for four-span suspension bridges is confirmed using various compatibility equations of the cable due to variation of the constraint conditions between main cable and top of towers. In addition, the simple parametric analysis for variation of the center tower rigidity is performed.

키워드

참고문헌

  1. Choi, D.-H., Gwon, S.-G., Yoo, H., and Na, H.-S. (2013). "Nonlinear static analysis of continuous multi-span suspension Bridges." International Journal of Steel Structures, Vol. 13, No. 1, pp. 103-115. https://doi.org/10.1007/s13296-013-1010-0
  2. Choi, D.-H., Gwon, S.-G., and Na, H.-S. (2014). "Simplified analysis for preliminary design of towers in suspension bridges." Journal of Bridge Engineering, ASCE, 10.1061/(ASCE)BE.1943-5592.0000551.
  3. Cobo del Arco, D. and Aparicio, A. C. (2001). "Preliminary static analysis of suspension bridges." Engineering Structures, Vol. 23, pp. 1096-1103. https://doi.org/10.1016/S0141-0296(01)00009-8
  4. ENVICO Consultant Co., Ltd. (2009). The design report of the New Millennium Bridge.
  5. Feng, Z., Zhao, A., Song, J. and Yang, Y. (2012). "Research on parametric modeling and computing of multi-tower suspension bridge based on ANSYS." Engineering Science, Vol. 10, No. 3, pp. 49-54.
  6. Gimsing, N. J. (1998). Cable supported bridges : Concept and design, 2nd Edition, John Wiley & Sons, London.
  7. Irvine, H. M. (1981). Cable structures, MIT Press, Massachusetts.
  8. Nogami, K., Okubo, A. and Morizono, Y. (2010). "Elasto-plastic behaviors and ultimate strength of 4 super long-span suspension bridges." Journal of Structural Engineering, JSCE, Vol. 56A, pp. 1-10.
  9. Nogami, K., Someya, A. and Yamasawa, T. (2006). "Elasto-plastic behaviors of four long-span suspension bridges and practical rigidity of towers." Journal of Structural Engineering, JSCE, Vol. 52, pp. 901-912.
  10. Ohshima, H., Sato, K. and Watanabe, R. (1984). "Structural analysis of suspension bridges." Journal of Engineering Mechanics, Vol. 110, No. 3, pp. 392-404. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(392)
  11. Petersen, C. (1993). Stahlbau, 3rd Edition, Vieweg Verlag, Braunschweig, Germany.
  12. Rubin, H. and Vogel, U. (1982). "Baustatik ebener stabwerke." Stahlbau Handbuch, Stahlbau-Verlags-GmbH, Cologne, Germany, pp. 196-206 (in German).
  13. Song, L., Zhang, Z., Ma, R. and Chen, A. (2012). "Stability analysis on middle steel pylon of taizhou yangtze river bridge." Proceedings of 18th Congress of IABSE, Seoul, pp. 573-574.
  14. Stavridis, L. T. (2008). "A simplified analysis of the behavior of suspension bridges under live load." Structural Engineering and Mechanics, Vol. 30, No. 5, pp. 559-576. https://doi.org/10.12989/sem.2008.30.5.559
  15. Timoshenko, S. P. and Young, D. H. (1965). Theory of Structures, 2nd Edition, McGraw-Hill Book Company, New York.
  16. Wang, D., Zhang, Z. and Chen, A. (2012). "Wind-resistant study on the steel middle pylon of taizhou yangtze river bridge." Proceedings of 18th Congress of IABSE, Seoul, pp. 262-263.
  17. Wollmann, G. P. (2001). "Preliminary analysis of suspension bridges," Journal of Bridge Engineering, ASCE, Vol. 6, No. 4, pp. 227-233. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:4(227)
  18. Yoshida, O., Okuda. M. and Moriya T. (2004). "Structural characteristics and applicability of four-span suspension bridge." Journal of Bridge Engineering, ASCE, Vol. 9, No. 5, pp. 453-463. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:5(453)
  19. Zhang, Q., Tang, H. Q. and Yang, G. W. (2012). "Selection of a structural system for a three-tower suspension bridge of maanshan yangtze river highway bridge." Structural Engineering International, Vol. 22, No. 1, pp. 139-143. https://doi.org/10.2749/101686612X13216060213590
  20. Zhu, M., Ji, L. and Ruan, J. (2012). "Key technology of middle pylon design in three-pylon multi-span suspension bridge." Proceedings of 18th Congress of IABSE, Seoul, pp. 428-429.

피인용 문헌

  1. Feasible Range for Midtower Lateral Stiffness in Three-Tower Suspension Bridges vol.23, pp.3, 2018, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001196