DOI QR코드

DOI QR Code

이중 대역 주파수 가변 1/8차 소형 기판집적형 도파관 안테나

Dual-Band Frequency Reconfigurable Small Eighth-Mode Substrate-Integrated Waveguide Antenna

  • 강현성 (중앙대학교 전자전기공학부) ;
  • 임성준 (중앙대학교 전자전기공학부)
  • Kang, Hyunseong (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lim, Sungjoon (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 투고 : 2013.08.23
  • 심사 : 2013.11.27
  • 발행 : 2014.01.31

초록

새로운 주파수 가변 이중 대역 안테나를 제안한다. 기존의 기판집적형 도파관(SIW: Substrate-Integrated Waveguide)에 비하여 1/8 크기를 갖는, 전기적으로 작은 1/8차 기판집적형 도파관(EMSIW: Eighth-Mode Substrate-Integrated Waveguide) 공진기 구조를 이용하여 전기적으로 작은 크기의 안테나를 설계하였다. 설계한 EMSIW 안테나 표면에 상보적 분할 링 공진기(CSRR: Complementary Split Ring Resonator) 구조를 추가적으로 탑재하여 이중 대역에서 동작할 수 있게 하였다. EMSIW와 CSRR 구조는 각각 1.575 GHz(GPS), 2.4 GHz 대역(WLAN) 주파수 대역을 만족시킬 수 있어 이중 공진 특성을 만족하였다. 기본적으로 CSRR은 대역폭이 좁기 때문에 Varactor 다이오드를 탑재시켜 주파수를 2.4 GHz에서 2.5 GHz까지 연속적으로 가변할 수 있게 하였다. 그에 따라 WLAN 표준에서 사용하고 있는 채널 선택 기능 또한 구현할 수 있다. Varactor 다이오드에 따라 EMSIW의 공진은 독립적으로 고정되어 GPS 주파수 수신을 안정적으로 유지할 수 있도록 설계하였다. 결과적으로 DC 바이어스 전압을 11.4 V에서 30 V로 변경함에 따라 GPS 대역 주파수는 고정되어 있고, WLAN 대역의 공진 주파수가 2.38 GHz에서 2.5 GHz까지 연속적으로 변화한다. 시뮬레이션, 측정값 사이에 반사 손실, 방사 패턴 특성이 잘 일치함을 관찰할 수 있었다.

In this paper, we propose a new frequency reconfigurable dual-band antenna. By using an electronically compact eighth-mode substrate-integrated-waveguide(EMSIW) resonator, we have designed a compact antenna, which performs dual-band movement by additionally loading a complementary split ring resonator(CSRR) structure. The EMSIW and CSRR structures are designed to satisfy the bandwidths of 1.575 GHz(GPS) and 2.4 GHz(WLAN), respectively. We load the CSRR with a varactor diode to allow a narrow bandwidth and to enable the resonance frequency to continuously vary from 2.4 GHz to 2.5 GHz. Thus, we realize a channel selection function that is used in the WLAN standards. Irrespective of how a varactor diode moves, the EMSIW independently resonates so that the antenna maintains a fixed frequency of the GPS bandwidth even at different voltages. Consequently, as the DC bias voltage changes from 11.4 V to 30 V, the resonance frequency of the WLAN bandwidth continuously changes between 2.38 GHz and 2.5 GHz, when the DC bias voltage changes from 11.4 V to 30 V. We observe that the simulated and the measured S-parameter values and radiation patterns are in good agreement with each other.

키워드

참고문헌

  1. L. I. Basilio, R. L. Chen, J. T. Williams, and D. R. Jackson, "A new planar dual-band GPS antenna designed for reduced susceptibility to low-angle multipath", IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2358-2366, Aug. 2007. https://doi.org/10.1109/TAP.2007.901818
  2. Y. Ding, K. W. Leung, "On the dual-band DRA-slot hybrid antenna", IEEE Trans. Antennas Propag., vol. 57, no. 3, pp. 624-630, Mar. 2009. https://doi.org/10.1109/TAP.2009.2013433
  3. R. K. Raj, M. Joseph, C. K. Aanandan, K. Vasudevan, and P. Mohanan, "A new compact microstrip-fed dualband coplanar antenna for WLAN applications", IEEE Trans. Antennas Propag., vol. 54, no. 12, pp. 3755-3762, Dec. 2006. https://doi.org/10.1109/TAP.2006.886505
  4. N. Behdad, K. Sarabandi, "A varactor tuned dual-band slot antenna", IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 401-408, Jan. 2006. https://doi.org/10.1109/TAP.2005.863373
  5. Z. H. Hu, C. T. P. Song, J. Kelly, P. S. Hall, and P. Gardner, "Wide tunable dual-band reconfigurable antenna", Electron. Lett., vol. 45, no. 22, pp. 1109-1110, Oct. 2009. https://doi.org/10.1049/el.2009.2737
  6. J. H. Lim, G. T. Back, Y. I. Ko, C. W. Song, and T. Y. Yun, "A reconfigurable PIFA using a switchable PINdiode and a fine-tuning varactor for USPCS/WCDMA/m-WiMAX/WLAN", IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2404-2411, Jul. 2010. https://doi.org/10.1109/TAP.2010.2048849
  7. N. Behdad, K. Sarabadni, "Dual-band reconfigurable antenna with a very wide tenability range", IEEE Trans. Antennas Propag., vol. 54, pp. 409-416, Feb. 2006. https://doi.org/10.1109/TAP.2005.863412
  8. S. Zhu, D. G. Holtby, K. L. Ford, and A. Tennant, "Compact low frequency varactor loaded tunable SRR antenna", IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 2301-2304, Apr. 2013. https://doi.org/10.1109/TAP.2013.2239952
  9. B. W. Parkinson, J. J. Spilker, Jr., P. Axelrad, and P. Enge, "Global positioning system: Theory and applications", Amer. Institute Astronautics Aeronautics, vol. I, pp. 3-11, 1996, 3rd Ed.
  10. W. I. Son, W. G. Lim, M. Q. Lee, S. B. Min, and J. W. Yu, "Design of compact quadruple inverted-F antenna with circular polarization for GPS receiver", IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1503-1510, May 2010. https://doi.org/10.1109/TAP.2010.2044344
  11. H. M. Chen, Y. K. Wang, Y. F. Lin, and S. C. Pan, "Microstrip-fed circularly polarized square-ring patch antenna for GPS application", IEEE Trans. Antennas Propag., vol. 57, pp. 1264-1267, Apr. 2009. https://doi.org/10.1109/TAP.2009.2015855
  12. A. A. Serra, P. Nepa, G. Manara, and R. Massini, "A low-profile linearly polarized 3D PIFA for handheld GPS terminals", IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1060-1066, Apr. 2010. https://doi.org/10.1109/TAP.2010.2041162
  13. R. Li, B. Pan, J. Laskar, and M. M. Tentzeris, "A compact broadband planar antenna for GPS, DCS-1800, IMT-2000, and WLAN applications", IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 25-27, 2007. https://doi.org/10.1109/LAWP.2006.890754
  14. V. Pathak, S. Thornwall, M. Krier, and S. Rowson, "Mobile handset system performance comparison of a linearly polarized GPS internal antenna with a circularly polarized antenna", in Proc. IEEE Antennas and Propagation Society Int. Symp., 2003, vol. 3, pp. 666-669.
  15. IEEE 802.11 standard: Wireless LANs [online]. http:// standards.ieee.org/about/get/802/802.11.html
  16. J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. G. García, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split- ring resonators coupled to planar transmission lines", IEEE Trans. Microw. Theory Tech., vol. 53, pp. 1451-1461, Apr. 2005. https://doi.org/10.1109/TMTT.2005.845211
  17. F. Aznar, A. Velez, J. Bonache, and J. Menes, "Compact lowpass filters with very sharp transition bands based on open complementary split ring resonators", Electronics Letters, vol. 45, no. 6, pp. 316-317, Mar. 2009. https://doi.org/10.1049/el.2009.2854
  18. J. Bonache, I. Hil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators", IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 265-271, Jan. 2006. https://doi.org/10.1109/TMTT.2005.861664
  19. L. S. Wu, X. L. Zhou, Q. F. Wei, and W. Y. Yin, "An extended doublet substrate integrated waveguide(SIW) bandpass filter with a complementary split ring resonator(CSRR)", IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 777-779, Dec. 2009. https://doi.org/10.1109/LMWC.2009.2033497
  20. H. Zhang, Y. Q. Li, X. Chen, Y. Q. Fu, and N. C. Yuan, "Design of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator", IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3352-3355, Oct. 2009. https://doi.org/10.1109/TAP.2009.2029400
  21. D. M. Pozar, Microwave Engineering, 3rd Ed. Hoboken, NJ: Wiley, Ch. 6.3, 2005.