DOI QR코드

DOI QR Code

Influence of Surface Roughness of Tools on the Friction Stir Welding Process

  • Hartmann, Michael (Department for Cutting and Joining (tff), Institute for Production Technologies and Logistics (IPL), University of Kassel) ;
  • Bohm, Stefan (Department for Cutting and Joining (tff), Institute for Production Technologies and Logistics (IPL), University of Kassel) ;
  • Schuddekopf, Sven (Department for Cutting and Joining (tff), Institute for Production Technologies and Logistics (IPL), University of Kassel)
  • Received : 2014.07.01
  • Accepted : 2014.11.01
  • Published : 2014.12.31

Abstract

Most publications on friction stir welding describe phenomena or results with given process parameters like feed rate, rotation speed, angle and depth of penetration. But without a complete documentation of tool design, the results under the same process parameters are completely different. For this purpose, the Institute of Cutting and Joining Manufacturing Processes (tff), University of Kassel investigated the influence of tool roughness on the friction stir welding process. Therefore a defined surface finish was produced by turning and die sinking. As basis of comparison the constant parameters were rotation speed, feed rate, tilt angle and a heel plunge depth. Sound butt-welds were produced in aluminium alloy 6082 (AlMgSi1) with 1.5 mm sheet thickness with a turned reference tool with a surface of $Ra=0.575{\mu}m$ in position controlled mode. The surfaces are manufactured from a very fine to a very rough structure, classified by the VDI-classes with differences in the arithmetical mean roughness. It can be demonstrated with the help of temperature measures, that less heat is generated at the surfaces of the shoulder and the pin by the higher roughness due to lower active friction contact surface. This can also be seen in the resulting wormhole defects.

Keywords

References

  1. Thomas, W.M.; Nicholas, E.D.; Needham, J.D.; Murch,M.G.; Templesmith, P.; Daws, C.J.: G.B. PatentApplication No. 9,125,978.8, Dec. 1991; U.S. Patent No. 5,460,317, Oct. 1995
  2. The Welding Institute (TWI): Friction Stir Welding - Intellectual Property Rights. http://www.twi.co.uk/services/intellectual-property-licensing/friction-stir-welding/in tellectual-property-rights/, 13.07. 2013
  3. Schiebel, E.: Trends der Fugetechnik im Leichtbau aus globaler Sicht. Eine Studie zur internationalen Forschung. Zukunftsweisende Fugetechnologie im Leichtbau, Wiener Neustadt, 2011
  4. Ostermann, F.: Anwendungstechnologie Aluminium. Springer-Verlag, 2007
  5. Arbeitsgruppe DVS/AG V 11.2/DIN NA 092-00-27 AA "Ruhrreibschwei${\ss}$en": Prasentationsunterlage zum Fugeverfahren Ruhrreibschwei${\ss}$en. http://www.dvs-server. de/AfT/V/V11/V11.2/Files/DVS_AG_V_11_2_-FSW-1-15.pdf, 09.05.2014
  6. Hatamleh, O. et al.: Surface roughness and friction coefficient in peened friction stir welded 2195 aluminum alloy. In Applied Surface Science, 2009, 255; S. 7414-7426 https://doi.org/10.1016/j.apsusc.2009.04.011
  7. Arbegast, W. J.: Friction Stir Welding and Processing Week 2 - Friction Stir Joining: Process Optimization (Parameters, Pin Tool Materials and Designs), South Dakota, 2005
  8. Popov, Valentin L.: Kontaktmechanik und Reibung. Von der Nanotribologie bis zur Erdbebendynamik. In: Kontaktmechanik und Reibung. Springer-Verlag Berlin Heidelberg (2010)
  9. Hauselmann Metalle: Werkstoff-Datenblatt EN AW-6082 http://www.haeuselmann.ch/webautor-data/23/EN6082.pdf 26.09.2014
  10. Dorrenberg Edelstahl: http://www.wst-center.de/fileadmin/user_upload/PDF-Dateien/Werkstoffe/12210.pdf 26.09.2014