DOI QR코드

DOI QR Code

Microsatellite multiplex PCR method for selective breeding studies in Pacific abalone (Haliotis discus hannai)

북방전복 (Haliotis discus hannai)의 선발육종 연구를 위한 microsatellite multiplex PCR법 개발

  • 박철지 (국립수산과학원 육종연구센터) ;
  • 남원식 (국립수산과학원 육종연구센터) ;
  • 이명석 (국립수산과학원 육종연구센터) ;
  • 강지윤 (국립수산과학원 육종연구센터) ;
  • 김경길 (국립수산과학원 육종연구센터)
  • Received : 2014.11.24
  • Accepted : 2014.12.26
  • Published : 2014.12.31

Abstract

The multiplex PCR system including six microsatellites from Haliotis discus hannai, consisting of dinucleotide and trinucleotide repeat units, is developed. The six loci were coamplified in a single reaction employing dye-labeled primers. Alleles from these loci were sized using an internal standard by automated sample processing in an ABI3100 Genetic Analyser. Amplified alleles in profiles containing selected microsatellites were typed clearly, providing easily interpretable results. In this results suggest that the presented multiplex PCR system may be a useful tool in a selective breeding program of H. discus hannai in which genetic identification will allow different genotypes to be reared together from fertilization. This should have a great impact as it will make selective breeding more efficient. Moreover, it will be useful in a variety of applications, including strain and hybrid identification, parentage assignment, pedigree reconstruction, estimating genetic diversity and/or inbreeding.

북방전복 선발육종에 필요한 친자확인 및 가계분석을 효율적으로 실험하기 위하여 microsatellite multiplex PCR 기술을 개발하였다. 개발한 mutiplex PCR 기술은 6개 microsatellite locus Hdh145, Hdh512, Hdh1321, Awb017, Awb083 및 Awb098을 한번의 PCR 증폭으로 다중분석이 가능하다. 이 기술은 높은 친자확인 성공률과 가계분석에 있어서도 모두 멘델의 분리법칙을 따르고 있다. 더욱이 대량의 시료처리를 필요로 하는 경우에 있어서도 시간절약 및 비용 절감뿐만 아니라 샘플 처리과정의 간소화가 가능하여 handling errors를 줄일 수 있다. 따라서 본 연구에서 개발된 multiplex PCR은 친자확인, 가계분석, 집단유전학 및 계통분류학 분석에 유용하게 사용할 수 있을 것이라 생각된다.

Keywords

References

  1. Argue, B.J., Arce, S.M., Lotz, J.M. and Moss, S.M. (2002) Selective breeding of pacific white shrimp (Litopenaeus vannamei) for growth and resistance to taura syndrome virus. Aquaculture, 204: 447-460. https://doi.org/10.1016/S0044-8486(01)00830-4
  2. Evans, B., White, R.W.G., Elliott, N.G. (2000) Characterization of microsatellite loci in Austrailian blacklip abalone (Haliotis rubra, Leach). Molecular Ecology, 9: 1183-1184. https://doi.org/10.1046/j.1365-294x.2000.00954-8.x
  3. Gjedrem, T. (1983) Genetic variation in quantitative traits and selective breeding in fish and shellfish. Aquaculture, 33: 51-72. https://doi.org/10.1016/0044-8486(83)90386-1
  4. Gjedrem, T. (1997) Selective breeding to improve aquaculture production. World Aquaculture, 28: 33-45.
  5. Gjedrem, T. (2000) Generic improvement of cold-water species. Aquaculture Research, 31: 25-33. https://doi.org/10.1046/j.1365-2109.2000.00389.x
  6. Gjerde, B., Terjesen, B.F., Barr, Y., Lein, I., Thorland, I. (2004) Genetic variation for juvenile growth and survival in Atlantic cod (Gadus morhua). Aquaculture, 236: 167-177. https://doi.org/10.1016/j.aquaculture.2004.03.004
  7. Goldstein, D.B. and Schlotterer, C. (1999) Microsatellites: Evolution and Application. Oxford University Press. New York.
  8. Hara, M. (1990) The effect of genetics on growth in three groups of abalone seeds. Bulletin of the TohoKu National Fisheries Research Institute, 52: 73-77
  9. Hara, M. and Kikuchi, S. (1992) Increasing growth rate of abalone, Haliotis discus hannai, using selection techniques. NOAA Technical report, 106: 21-26.
  10. Hara, M. and Sekino, M. (2005) Genetic difference between Ezo-awabi Haliotis discus hannai and Kuro-awabi Haliotis discus discus population: microsatellite-based population analysis in Japanese abalone. Fisheries Science, 71: 754-766. https://doi.org/10.1111/j.1444-2906.2005.01025.x
  11. Hunang, B. and Hannna, P.J. (1998) Identification of three polymorphic microsatellite loci in blacklip abalone, Haliotis rubra (Leach) and detection in other abalone species. Journal of Shellfish Research, 17: 795-799.
  12. Li, Q., Park, C., Kijima, A. (2002) Isolation and characterization of microsatellite loci in the Pacific abalone, Haliotis discus hannai. Journal of Shellfish Research, 21: 811-815.
  13. Lucas, T., Macbeth, M., Degnan, S.M., Knibb, W. and Degnan, B.M. (2006) Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage. Aquaculture, 259: 146-152. https://doi.org/10.1016/j.aquaculture.2006.05.039
  14. Miller, K.M., Laberee, K., Kaukinen, K.H., Li, S., Withler, R.E. (2001) Development of microsatellite loci in pinto abalone (Haliotis kamtschatkana). Molecular Ecology Notes, 1: 315-317. https://doi.org/10.1046/j.1471-8278.2001.00122.x
  15. Olesen, I., Gjedrem, T., Bentsen, H.B., Gjerde, B. and Rye, M. (2003) Breeding programs for sustainable aquaculture. Journal of Applied Aquaculture, 13: 179-204. https://doi.org/10.1300/J028v13n03_01
  16. Park, C.J., Li, Q., Kobayashi, T., Kijima, A. (2003) Characterization novel microsatellite DNA marker in the Pacific abalone, Haliotis discus hannai. Fish genetics and Breeding science, 33: 19-24.
  17. Park, C.J., Lee, J.H., Noh, J.K., Kim, H.C., Park, J.W., Hwang, I.J. and Kim, S.Y. (2012) Growth of Pacific abalone, Haliotis discus hannai, using selection breeding techniques. The Korean Journal Malacology, 28(4): 343-347. https://doi.org/10.9710/kjm.2012.28.4.343
  18. Ren, P., Wang, Z., Yao, C., Liu, Y., Ke, C. (2008) Development of 11 polymorphic microsatellite loci in the small abalone (Haliotis diversicolor Reeve). Molecular Ecology Resources, 8: 1390-1392 https://doi.org/10.1111/j.1755-0998.2008.02329.x
  19. Sekino, M., Saido, T., Fujita, T., Kobayashi, T., Takami, H. (2005) Microsatellite DNA markers of Ezo abalone (Haliotis discus hannai): a preliminary assessment of natural populations sampled from heavily stocked areas. Aquaculture, 243: 33-47. https://doi.org/10.1016/j.aquaculture.2004.10.013
  20. Sekino, M., Kobayashi, T., Hara, M. (2006) Segregation and Linkage Analysis of 75 Novel Microsatellite DNA markers in Pair Crosses of Japnaese Abalone (Haliotis discus hannai) Using the 5'-Tailed Primer Method. Marine Biotechnology, 8: 453-466. https://doi.org/10.1007/s10126-005-6179-6
  21. Sekino M. and Hara M. (2007) Individual assignment tests proved genetic boundaries in a species complex of Pacific abalone (genus Haliotis). Conservation Genetics, 8: 823-841. https://doi.org/10.1007/s10592-006-9229-3
  22. Selvamani, M.J.P., Degnan, S.M., Paetkau, D., Degnan, B.M. (2000) Highly polymorphic microsatellite loci in the Heron Reep population of the tropical abalone, Haliotis asinina. Molecular Ecology, 9: 1184-1185. https://doi.org/10.1046/j.1365-294x.2000.00954-9.x
  23. Suenaga, E. and Nakamura, H. (2005) Evolution of tree methods for effective extraction of DNA from human hair. Journal of chromatography B, 820: 137-141. https://doi.org/10.1016/j.jchromb.2004.11.028
  24. Sun X.Q., Zhen M.G., Yang G.P. (2007) Development of 15 polymorphic genic microsatellite DNA markers of Pacific abalone Haliotis discus hannai. Moleculer Ecology Notes, 7: 604-606. https://doi.org/10.1111/j.1471-8286.2006.01646.x
  25. Viana, M.T. (2002) Abalone Aquaculture, An overview. World Aquaculture, pp. 34-39.
  26. Walsh, P.S., Metzger, D.A., Higuchi, R. (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10: 506-513.
  27. Zheng, H., Zhang, G., Liu, X. and Guo, X. (2006) Sustained response to selection in an introduced population of the hermaphroditic bay scallop Argopecten irradians irradians Lamarck (1819). Aquaculture, 255: 579-585. https://doi.org/10.1016/j.aquaculture.2005.11.037