DOI QR코드

DOI QR Code

Production of Polyhydroxybutyrate from Crude Glycerol and Spent Coffee Grounds Extract by Bacillus cereus Isolated from Sewage Treatment Plant

  • Lee, Gi Na (Korean Minjok Leadership Academy) ;
  • Choi, So Young (Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, KAIST) ;
  • Na, Jonguk (Korean Minjok Leadership Academy) ;
  • Youn, HaJin (Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, KAIST) ;
  • Jang, Yu-Sin (Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, KAIST)
  • Received : 2014.10.14
  • Accepted : 2014.11.30
  • Published : 2014.12.30

Abstract

Production of biodegradable polymer polyhydroxyalkanoates (PHAs) from industrial wastes exhibits several advantages such as recycle of waste and the production of high valuable products. To this end, this study aimed at isolating from the sewage treatment plant a PHA producing bacterium capable of utilizing wastes generated from biodiesel and food industries. A Bacillus cereus strain capable of producing poly(3-hydroxybutyrate) [P(3HB)] was isolated, which was followed by confirmation of P(3HB) accumulation by gas-chromatographic analyses. Then, the effects of nutrient limitation on P(3HB) production by B. cereus was first examined. Cells cultured in a minimal medium under the limitation of nitrogen, potassium and sulfur suggested that nitrogen limitation allows the highest P(3HB) accumulation. Next, production of P(3HB) was examined from both waste of biodiesel production (crude glycerol) and waste from food industry (spent coffee grounds). Cells cultured in nitrogen-limited minimal medium supplemented crude glycerol and waste spent coffee grounds extract accumulated P(3HB) to the contents of 2.4% and 1.0% of DCW. This is the first report demonstrating the capability of B. cereus to produce P(3HB) from waste raw materials such as crude glycerol and spent coffee grounds.

Keywords

References

  1. Park, S. J., T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 30: 1196-1206. https://doi.org/10.1016/j.biotechadv.2011.11.007
  2. Park, S. J., Y. A. Jang, H. Lee, A. R. Park, J. E. Yang, J. Shin, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee (2013) Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab. Eng. 20: 20-28. https://doi.org/10.1016/j.ymben.2013.08.002
  3. Sohn, S. B., T. Y. Kim, J. M. Park, and S. Y. Lee (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol. J. 5: 739-750. https://doi.org/10.1002/biot.201000124
  4. Lee, S. Y., H. H. Wong, J. I. Choi, S. H. Lee, S. C. Lee, and C. S. Han (2000) Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 68: 466-470. https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<466::AID-BIT12>3.0.CO;2-T
  5. Hu, S., X. Luo, C. Wan, and Y. Li (2012) Characterization of crude glycerol from biodiesel plants. J. Agric. Food Chem. 60: 5915-5921. https://doi.org/10.1021/jf3008629
  6. Johnson, D. T. and K. A. Taconi (2007) The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 26: 338-348. https://doi.org/10.1002/ep.10225
  7. Corma, A., G. W. Huber, L. Sauvanaud, and P. O'Connor (2008) Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J. Catal. 257: 163-171. https://doi.org/10.1016/j.jcat.2008.04.016
  8. Mu, Y., H. Teng, D. J. Zhang, W. Wang, and Z. L. Xiu (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755-1759. https://doi.org/10.1007/s10529-006-9154-z
  9. Malaviya, A., Y. S. Jang, and S. Y. Lee (2012) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Microbiol. Biotechnol. 93: 1485-1494. https://doi.org/10.1007/s00253-011-3629-0
  10. Sabourin-Provost, G. and P. C. Hallenbeck (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour. Technol. 100: 3513-3517. https://doi.org/10.1016/j.biortech.2009.03.027
  11. Mothes, G., C. Schnorpfeil, and J. U. Ackermann (2007) Production of PHB from crude glycerol. Eng. Life Sci. 7: 475-479. https://doi.org/10.1002/elsc.200620210
  12. Kondamudi, N., S. K. Mohapatra, and M. Misra (2008) Spent coffee grounds as a versatile source of green energy. J. Agri. Food Chem. 56: 11757-11760. https://doi.org/10.1021/jf802487s
  13. Arya, M. and L. J. Rao (2007) An impression of coffee carbohydrates. Crit. Rev. Food Sci. Nutr. 47: 51-67. https://doi.org/10.1080/10408390600550315
  14. Reddy, S. V., M. Thirumala, T. V. K. Reddy, and S. K. Mahmood (2008) Isolation of bacteria producing polyhydroxyalkanoates (PHA) from municipal sewage sludge. World. J. Microbiol. Biotechnol. 24: 2949-2955. https://doi.org/10.1007/s11274-008-9839-7
  15. Duke, J. A., & Atchley, A. A. (1984) Proximate analysis, IN: Christie, BR (ed), The handbook of plant science in agriculture. Boca Raton, FL: CRC Press, Inc.
  16. Bertrand, B., P. Vaast, E. Alpizar, H. Etienne, F. Davrieux, and P. Charmetant (2006) Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology 26: 1239-1248. https://doi.org/10.1093/treephys/26.9.1239
  17. Greenspan, P., E. P. Mayer, and S. D. Fowler (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100: 965-973. https://doi.org/10.1083/jcb.100.3.965
  18. Jung, Y. K., T. Y. Kim, S. J. Park, and S. Y. Lee (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105: 161-171. https://doi.org/10.1002/bit.22548
  19. Braunegg, G., B. Sonnleitner, and R. M. Lafferty (1978) A rapid gas chromatographic method for the determination of poly-b-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29-37. https://doi.org/10.1007/BF00500854
  20. Jacquel, N., C. W. Lo, Y. H. Wei, H. S. Wu, and S. S. Wang (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem. Eng. J. 39: 15-27. https://doi.org/10.1016/j.bej.2007.11.029
  21. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  22. Zhang, H. F., L. Ma, Z. H. Wang, and G. Q. Chen (2009) Biosynthesis and characterization of 3-hydroxyalkanoate terpolyesters with adjustable properties by Aeromonas hydrophila. Biotechnol. Bioeng. 104: 582-589. https://doi.org/10.1002/bit.22409