DOI QR코드

DOI QR Code

Endophytic bacterium Pseudomonas fluorescens strain EP103 was effective against Phytophthora capsici causing blight in chili pepper

식물근권에서 분리한 Pseudomonas fluorescens strain EP103에 의한 고추역병억제

  • Kim, Tack-Soo (Division of Agricultural Microbiology, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Dutta, Swarnalee (Division of Agricultural Microbiology, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Lee, Se Won (Division of Agricultural Microbiology, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Park, Kyungseok (Division of Agricultural Microbiology, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA))
  • 김택수 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 스와나리더타 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 이세원 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 박경석 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2014.11.10
  • Accepted : 2014.12.03
  • Published : 2014.12.31

Abstract

Endophytic bacterial strains from root tissue of strawberry were screened for their efficacy in growth improvement and control of Phytophthora blight disease of chili pepper plant under greenhouse condition. Plants treated with the strain EP103, identified as Pseudomonas fluorescens, showed growth improvement in terms of fresh weight and root length compared to the untreated control and other endophytic strains. When challenged with Phytophthora capsici, there was significant reduction of disease in EP103 treated plants with an efficacy of 78.7%. There was no direct inhibition of the target pathogen by EP103 when tested under in vitro antibiosis assay. Analysis of differential expression of selected marker genes for induced systemic resistance (ISR) in plants treated with EP103 and challenged with P. capsici showed up-regulation of PR1 and PR10 pathogenesis-related (PR) proteins. PCR analysis showed that EP103 produced secondary metabolites such as pyoluteorin, pyrrolnitrin, hydrogen cyanide and orfamide A. This study indicated the potential of endophytic P. fluorescens strain EP103 as an efficient biocontrol agent against P. capsici in chili pepper plant.

딸기 근권에서 분리한 내생균 중 고추역병균 방제 및 고추생육촉진 효과가 우수한 균주를 선발하였다. Pseudomonas fluorescen EP103으로 명명된 내생균주는 다른 내생균주와 비교하여 식물의 뿌리 길이와 생체 중이 크게 증가하였다. 고추역병에 대한 온실검정에서 EP103처리는 방제가 78.7%을 나타냈으며 항균력 실험결과 고추역병균을 직접 억제하지는 않았다. EP103이 처리된 고추에서는 PR1, PR10등의 병저항성 유전자가 발현되었으며 EP103의 PCR분석 결과 피올테오린, 파이로니트린, 하이드로젠 싸이아나이드, 오르화미드 등의 유용유전자를 함유하고 있음이 밝혀졌다. 따라서 본 균주는 고추역병의 생물 방제용으로 활용할 가치가 있는 것으로 판단된다.

Keywords

References

  1. Azevedo, J. L., W. Maccheroni Jr., J. O. Pereira and W. L. de Araujo (2000) Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron. J. Biotechnol. Vol. 3, No. 1. Online publication
  2. Bhatia, S., R. C. Dubey and D. K. Maheshwari (2005) Enhancement of plant growth and suppression of collar rot of sunflower caused by Sclerotium rolfsii through fluorescent Pseudomonas. Ind. Phytopathol. 58:17-24.
  3. Cameron, R. K., N. L. Paiva, C. J. Lamb and R. A. Dixon (1999) Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55:121-130. https://doi.org/10.1006/pmpp.1999.0214
  4. Compant, D., B. Duffy, J. Nowak, C. Clement and E. A. Barka (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  5. De Souza, J. T., D. M. Weller and J. M. Raaijmakers (2003) Frequency, diversity and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species in Dutch take-all decline soils. Phytopathology 93:54-63. https://doi.org/10.1094/PHYTO.2003.93.1.54
  6. Defago, G. and D. Haas (1990) Pseudomonas as antagonists of soil borne pant pathogens: Modes of action and genetic analysis. In: Soil Biochemistry, Vol. 6; Jeen-Marc Bollag and G. Stotzky (Ed); Marcel Dekker, New York, USA. pp 249-291.
  7. Dowling, D. N. and F. O'Gara (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 12:133-141. https://doi.org/10.1016/0167-7799(94)90091-4
  8. Dwivedi, D. and B. N. Johri (2003) Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Curr. Sci. 85:1693-1703.
  9. Fu, Z. Q. and X. Dong (2013) Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863. https://doi.org/10.1146/annurev-arplant-042811-105606
  10. Germaine, K., E. Keogh, G. Garcia-Cabellos, B. Borremans, D. Van der Lelie, T. Barac, L. Oeyen, J. Vangronsveld, F. P. Moore, E. R. B. Moore, C. D. Campbell, D. Ryan and D. N. Dowling (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol. 48:109-118. https://doi.org/10.1016/j.femsec.2003.12.009
  11. Gross, H., V. O. Stockwell, M. D. Henkels, B. Nowak-Thompson, J. E. Loper and W. H. Gerwick (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14:53-63. https://doi.org/10.1016/j.chembiol.2006.11.007
  12. Hallmann, J., R. Rodriguez-Kabana and J. W. Kloepper (1999) Chitin mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol. Biochem. 31:551-560. https://doi.org/10.1016/S0038-0717(98)00146-1
  13. Hallmann, J., Q. A. Hallmann, W. F. Mahaffee and J. W. Kloepper (1997) Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43:895-914. https://doi.org/10.1139/m97-131
  14. Howell, C. R. and R. D. Stipanovic (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480-482. https://doi.org/10.1094/Phyto-69-480
  15. Hurek, T., L. L. Handley, B. Reinhold-Hurek and Y. Piche (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol. Plant-Microbe Interact. 15:233-242. https://doi.org/10.1094/MPMI.2002.15.3.233
  16. Iniguez, A. L., Y. Dong and E. W. Triplett (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant-Microbe Interact. 17:1078-1085. https://doi.org/10.1094/MPMI.2004.17.10.1078
  17. Kishimoto, K., K. Matsui, R. Ozawa and J. Takabayashi (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol. 46:1093-1102. https://doi.org/10.1093/pcp/pci122
  18. Kraus, J. and J. E. Loper (1995) Characterization of a genomic locus required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 61:849-854.
  19. Lanteigne, C., V. J. Gadker, T. Wallon, A. Novinscak and M. Filion (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Biol. Cont. 102:967-973.
  20. Lee, S. C. and B. K. Hwang (2005) Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta 221:790-800. https://doi.org/10.1007/s00425-005-1488-6
  21. Michelsen, C. F. and P. Stougaard (2012) Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluoresscens In5 from Greenland is highly dependent on growth medium. Can. J. Microbiol. 58:383-390.
  22. Nielson, T. H. and J. Sorensen (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl. Environ. Microbiol. 69:861-868. https://doi.org/10.1128/AEM.69.2.861-868.2003
  23. Nowak, J. and V. Shulaev (2003) Priming for transplant stress resistance in in vitro propagation. In vitro Cell Dev. Biol. Plant. 39:107-124. https://doi.org/10.1007/s11626-003-0001-4
  24. Park, C. J., K. J. Kim, R. Shin, J. M. Park, Y. C. Shin and K. H..Paek (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 37:186-198. https://doi.org/10.1046/j.1365-313X.2003.01951.x
  25. Persello-Cartieaux, F., L. Nussaume and C. Robaglia (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26:189-199. https://doi.org/10.1046/j.1365-3040.2003.00956.x
  26. Pieterse C. M. J., S. C. M. Van Wees, J. A. Van Pelt, M. Knoester, R. Laan, H. Gerrits, P. J. Weisbeek and L. C. van Loon (1998) A novel signalling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580. https://doi.org/10.1105/tpc.10.9.1571
  27. Pirttila, A. M., P. Joensuu, H. Pospiech, H. J. Jalonen and A. Hohtola (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol. Plantarum 121:305-312. https://doi.org/10.1111/j.0031-9317.2004.00330.x
  28. Ploetz, R., R. J. Schnell and J. Haynes (2002) Variable response of open-pollinated seedling progeny of avocado to Phytophthora root rot. Phytoparasitica 30:262-268. https://doi.org/10.1007/BF03039994
  29. Raaijmakers J. M., I. de Bruijn, O. Nybroe and M. Ongena (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34:1037-1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
  30. Raaijmakers, J. M., I. De Bruijn and M. J. de Kock (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant Microbe Interact. 19:699-710. https://doi.org/10.1094/MPMI-19-0699
  31. Rosenblueth, M. and E. Martinez-Romero (2006) Bacteial endophytes and theri interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837. https://doi.org/10.1094/MPMI-19-0827
  32. Rosenblueth, M. and E. Martinez-Romero (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch. Microbiol. 181:337-344. https://doi.org/10.1007/s00203-004-0661-9
  33. Sambrook, J. E., E. F. Fritsch and T. Maniatis (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  34. Sang, M. K., J. G. Kim and K. D. Kim (2010) Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici. Phytopathology 100:774-783. https://doi.org/10.1094/PHYTO-100-8-0774
  35. Seghers, D., L. Wittebolle, E. M. Top, W. Verstraete and S. D. Siciliano (2004) Impact of agricultural practices on the Zea mays L. Endophytic community. Appl. Environ. Microbiol. 70:1475-1482. https://doi.org/10.1128/AEM.70.3.1475-1482.2004
  36. Sturz, A. and J. Kimpinski (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root lesion nematodes in the potato root zone. Plant Soil 262:241-249. https://doi.org/10.1023/B:PLSO.0000037046.86670.a3
  37. Sturz, A. V., B. R. Christie and J. Nowak (2000) Bacterial endophytes: Potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19:1-30. https://doi.org/10.1016/S0735-2689(01)80001-0
  38. van Loon, L. C., P. A. H. M. Bakker and C. M. J. Pieterse (1998) Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36:453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
  39. Van Wees, S. C., S. Vander Ent and C. M. J. Pieterse, (2008) Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443-438. https://doi.org/10.1016/j.pbi.2008.05.005
  40. Wang, Y. Q., Y. Ohara, H. Nakayashiki, Y. Tosha and S. Mayama (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact. 18:385-396. https://doi.org/10.1094/MPMI-18-0385
  41. Xie, Y. R., Z. Y. Chen, R. L. Brown and D. Bhatnagar (2010) Expression and functional characterization of two pathogenesis-related protein10 genes from Zea mays. J. Plant Physiol.167:121-130. https://doi.org/10.1016/j.jplph.2009.07.004
  42. Yang, J. W., S. H. Yu and C. M. Ryu (2009) Priming of defense-related genes confers root-colonizing Bacillus-elicited induced systemic resistance in pepper. Plant Pathol. J. 25: 389-399. https://doi.org/10.5423/PPJ.2009.25.4.389
  43. Zinniel, D. K., P. Lambrecht, N. B. Harris, Z. Feng, D. Kuczmarski, P. Higley, C. A. Ishmaru, A. Arunakumari, R. G. Barletta and A. K. Vidaver (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68:2198-2208. https://doi.org/10.1128/AEM.68.5.2198-2208.2002

Cited by

  1. Microbial biocontrol agents against chilli plant pathogens over synthetic pesticides: a review vol.87, pp.4, 2014, https://doi.org/10.1007/s43538-021-00053-2