DOI QR코드

DOI QR Code

A Narrowband Detection Performance for Small Objects on Seabed by the Active Synthetic Aperture Sonar

능동 합성개구면소나에 의한 해저 소형물체 협대역 탐지 성능 고찰

  • Kim, Boo-Il (Department of Interdisciplinary Program of Weapon Systems Engineering, Specialized Graduate School Science & Technology Convergence, Pukyong National University)
  • Received : 2014.11.22
  • Accepted : 2014.12.16
  • Published : 2014.12.31

Abstract

Detection and processing techniques for small objects on seabed by the active synthetic aperture sonar can be increased the detection performance because it can be used by short sensor array in small unmanned underwater systems that are spatially constrained. But the limited conditions on constant speed and straight movement of the platform cause a large error in the number of external environmental factors and exact phase synthesis process. In this study, analyzed the applicability of active synthetic aperture processing that is mounted on such a system, and compared detection resolution change in accordance with the phase difference mismatch caused by the along track disturbance. Various simulations were performed as a coherently focus processing model by adding along track disturbance mismatched parameter on the configuring simulator. As the result, detection performance of active synthetic processing for small objects on seabed was found a number of changes by the phase difference mismatch errors according to track disturbances and S/N ratio variations.

능동 합성개구면소나에 의한 해저부설 소형물체 탐지처리 기술은 공간적 제약을 받는 소형 무인화 시스템에서 짧은 센서어레이 사용이 가능하므로 개구면 합성처리에 의해 탐지성능을 올릴 수가 있다. 하지만 플렛폼의 정속도 직선기동에 의한 제한조건은 여러 가지 외부 환경요인과 정확한 위상차 합성 처리에 있어서 많은 오차를 유발하게 된다. 본 연구에서는 이러한 시스템에 탑재되는 능동형 합성개구면처리에 대한 적용 가능성을 분석하고, 전용 시뮬레이터를 구성하여 진행경로 변동에 의해 발생되는 위상차 부정합에 따른 탐지해상도 성능변화를 비교 검토하고자 한다. 시뮬레이션은 코히어런트 초점처리 모델에 경로변동 모듈을 추가하여 실행하였으며, 결과에서 알 수 있듯이 합성개구면처리에 의한 해저 소형물체 탐지성능은 플렛폼의 경로변동에 의한 위상차 부정합 및 S/N비 변화에 의해 많은 변화가 있음을 알 수 있었다.

Keywords

References

  1. Hayden J. Callow, Michael P. Hayes, and Peter T. Gough, "Motion-Compensation Improvement for Widebeam, Multiple- Receiver SAS Systems", IEEE Journal of Oceanic Engineering, Vol. 34, pp. 262-268, 2009. https://doi.org/10.1109/JOE.2009.2014659
  2. James A. Winnefeld, Frank Kendall, "Unmanned Systems Integrated Roadmap FT2013-2038", Ref. No.: 14-S-0553, U.S., pp. 1-25, 2013.
  3. Jose E. Fernandez, James T. Christoff, and Daniel A. Cook, "Synthetic Aperture Sonar On AUV", Oceans 2003 MTS/IEEE Conference, pp. 1718- 1722, 2003.
  4. John E. Piper, Kerry W. Commander, Eric I. Thorsos, and Kevin L. Williams, "Detection of Buried Targets Using a Synthetic Aperture Sonar", IEEE Journal of Oceanic Engineering, Vol. 27, pp. 495-503, 2002. https://doi.org/10.1109/JOE.2002.1040933
  5. Lapierre Lionel, "Underwater Robots Part I: Current Systems and Problem Pose", LIRMM, France, pp. 309-330, 2006.
  6. Michael P. Bruce, "A Processing requirement and Resolution Capability Comparison of Side-Scan and Synthetic-Aperture Sonars", IEEE Journal of Oceanic Engineering, Vol. 17, pp. 106-117, 1992. https://doi.org/10.1109/48.126959
  7. Michael P. Hayes, "Synthetic Aperture Sonar: A Review of Current Status", IEEE Journal of Oceanic Engineering, Vol. 34, pp. 207-217, 2009. https://doi.org/10.1109/JOE.2009.2020853
  8. P. T. Gough and D. W. Hawkins, "A Short History of Synthetic Aperture Sonar", IEEE Xplore Digital Library, pp. 618-620, 1998.
  9. Robert S. H. Istepanian and Milica Stojanovic, "Underwater Acoustic Digital Signal Processing and Communication Systems", Kluwer Academic Publishers, pp. 37-75, 2002.
  10. Roy Edgar Hansen, "Introduction to Synthetic Aperture Sonar", www.intechopen.com, pp. 1-25, 2011.
  11. Roy Edgar Hansen and Sean Chapman, "Signal Processing for AUV based Interferometric Synthetic Aperture Sonar", IEEE Xplore Digital Library, pp. 2438-2444, 2003.
  12. Sergio Rui Silva, Sergio Cunha, Anibal Matos and Nuno Cruz, "Sub-Band Processing of Synthetic Aperture Sonar Data", Priceeding of the OCEANS 2008 MTS/IEEE Conference, pp.1-8, 2008.
  13. W. E. Landay III, M. A. LeFever, R. A. Spicer, R. M. Levitre, and S. J. Tomaszeski, "The Navy Unmanned Undersea Vehicle(UUV) Master Plan", pp. 1-53, 2004.