DOI QR코드

DOI QR Code

Predicting ground condition ahead of tunnel face utilizing electrical resistivity applicable to shield TBM

Shield TBM에 적용 가능한 전기비저항 기반 터널 굴착면 전방 예측기술

  • Park, Jin-Ho (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Kang-Hyun (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Shin, Young-Jin (Design Manager, UAE DTS T-01 Site, Samsung C&T) ;
  • Kim, Jae-Young (Deputy General Manager, TBM Part, Samsung C&T) ;
  • Lee, In-Mo (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 박진호 (고려대학교 건축사회환경공학부) ;
  • 이강현 (고려대학교 건축사회환경공학부) ;
  • 신영진 ((주)삼성물산 건설부문 UAE DTS T-01현장) ;
  • 김재영 ((주)삼성물산 건설부문 토목ENG센터 TBM팀) ;
  • 이인모 (고려대학교 건축사회환경공학부)
  • Received : 2014.11.12
  • Accepted : 2014.11.26
  • Published : 2014.11.28

Abstract

When tunnelling with TBM (Tunnel Boring Machine), accessibility to tunnel face is very limited because tunnel face is mostly occupied by a bunch of machines. Existing techniques that can predict ground condition ahead of TBM tunnel are extremely limited. In this study, the TBM Resistivity Prediction (TRP) system has been developed for predicting anomalous zone ahead of tunnel face utilizing electrical resistivity. The applicability and prediction accuracy of the developed system has been verified by performing field tests at subway tunnel construction site in which an EPB (Earth Pressure Balanced) shield TBM was used for tunnelling work. The TRP system is able to predicts the location, thickness and electrical properties of anomalous zone by performing inverse analysis using measured resistivity of the ground. To make field tests possible, an apparatus was devised to attach electrode to tunnel face through the chamber. The electrode can be advanced from the chamber to the tunnel face to fully touch the ground in front of the tunnel face. In the 1st field test, none of the anomalous zone was predicted, because the rock around the tunnel face has the same resistivity and permittivity with the rock ahead of tunnel face. In the 2nd field test, 5 m thick anomalous zone was predicted with lower permittivity than that of the rock around the tunnel face. The test results match well with the ground condition predicted, respectively, from geophysical exploration, or directly obtained either from drilling boreholes or from daily observed muck condition.

TBM으로 시공되는 터널은 기계에 의해 전단면 굴착(full face tunnelling)이 이루어지므로, 굴착면에 접근하는 것이 매우 제한적이다. 이러한 한계를 극복하고 TBM 터널에서 굴착면 전방의 지반상태를 정확히 예측할 수 있는 기술은 매우 드물다. 본 연구는 TBM에서 전기비저항을 사용하여 굴착면 전방의 이상지반을 예측할 수 있는 TBM 비저항 예측(TRP)시스템을 개발하고, TBM 현장에서의 적용성과 예측 정확성을 검증하기 위해 EPB 쉴드 TBM으로 시공 중인 지하철 터널에서 현장 실험을 수행하였다. TBM 비저항 예측 시스템은 전극을 사용하여 지반의 전기비저항을 측정하고, 이를 바탕으로 역해석을 수행하여, 이상지반의 위치와 두께 및 전기적 특성을 예측한다. 전극이 부착된 강관을 유압으로 굴착면에 압입하여, 전극이 지반과 완전히 접촉하도록 장치를 제작하였다. 또한, 전극이 챔버 내부를 관통하여 나아가도록 하는 동시에 토사유출을 방지하도록 설계하여 현장에서의 전방예측을 가능하게 하였다. 1차 실험 결과, 굴착면 근접 지반과 굴착면 전방 지반의 전기비저항 및 유전율이 동일하게 나타나 이상지반이 존재하지 않음을 예측하였다. 2차 실험 결과, 굴착면 전방 약 1 m 지점부터 상대적으로 낮은 유전율 비를 가지는 이상지반 구간이 약 5 m 길이로 존재함을 예측하였다. 이는 각각 지표에서 물리탐사 또는 시추를 통해 조사된 지반상태 및 TBM 굴착 중 예측 구간에서 반출되었던 버력을 관찰한 기록과 잘 일치하였다.

Keywords

References

  1. Lee, I.M., Choi, S.S., Kim, S.T., Kim, C.K., Jun, J.S. (2002), "3D analysis of fracture zones agead of tunnel face using seismic reflection", Tunnelling Technology, Vol. 4, No. 4, pp. 301-317.
  2. Rye, H.H., Cho, G.C., Lee, I.M. (2008), "Detection of anomalies in particulate material using electrical resistivity survey-enhanced algorithm", Modern Physics Letters B, Vol. 22, No. 11, pp. 1093-1098. https://doi.org/10.1142/S0217984908015899
  3. Lee, K.H., Park, J.H., Kim, D.H., Lee, I.M. (2011), "Technology for predicting ground condition ahead of a tunnel: A review in mechanized tunnelling", Korean Tunnelling and Underground Space Association Symposium (November 11), pp. 107-115.
  4. Geem, Z.W., Kim, J.H., Loganathan, G.V. (2001), "New heuristic optimization algorithm: harmony search", Simulation, Vol. 76, pp. 60-68. https://doi.org/10.1177/003754970107600201
  5. Park, J.H., Lee, K.H., Shin, S.H., Lee, S.W., Lee, I.M. (2014), "Harmony search algorithm to predict anomalous zone ahead of tunnel face utilizing electrical resistivity survey", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 2, pp. 149-160. https://doi.org/10.9711/KTAJ.2014.16.2.149
  6. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J. (2009), "A survey on metaheuristics for stochastic combinatorial optimization", Natural Computing, Vol. 8, pp.239-287. https://doi.org/10.1007/s11047-008-9098-4
  7. Holland, J.H. (1975), Adaptation in natural and artificial systems, MIT Press Cambridge, USA.
  8. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. (1953), "Equations of state calculations by fast computing machines", The Journal of Chemical Physics, Vol, 21, pp. 1087-1092. https://doi.org/10.1063/1.1699114
  9. Glover, F. (1977), "Heuristic for integer programming using surrogate constraints", Decision Sci, Vol. 8, No. 1, pp. 156-166. https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
  10. Dorigo, M., Maniezzo, V., Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents," IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 26, No 1, pp. 29-41. https://doi.org/10.1109/3477.484436
  11. Geem, Z.W., Sim, K.B. (2010), "Parameter-settingfree harmony search algorithm", Applied Mathematics and Computation, Vol. 217, pp. 3881-3889. https://doi.org/10.1016/j.amc.2010.09.049
  12. Lee, K.S., Geem, Z.W. (2005), "A new metaheuristic algorithm for continuous engineering optimization: harmony search theory and practice", Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
  13. Mahdavi, M., Fesanghary, E. (2007), "An improved harmony search algorithm for solving optimization problems", Applied Mathematics and Computation, Vol. 188, No. 2, pp. 1567-1579. https://doi.org/10.1016/j.amc.2006.11.033
  14. Kim, J.H., Chung, S.H., Cho, I.K. (1996), "Measurement of the Relative Permittivities of Rock for Georadar Exploration in Mega-hertz Band", Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol. 33, No. 5, pp. 383-390.

Cited by

  1. TBM risk management system considering predicted ground condition ahead of tunnel face: methodology development and application vol.18, pp.1, 2016, https://doi.org/10.9711/KTAJ.2016.18.1.001